L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

УПРАВЛЯЕМЫЙ УПРУГОПЛАСТИЧЕСКИЙ ДЕМПФЕР ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ ГЛАВНОГО ЦИРКУЛЯЦИОННОГО КОНТУРА РЕАКТОРА АЭС


НазваниеУПРАВЛЯЕМЫЙ УПРУГОПЛАСТИЧЕСКИЙ ДЕМПФЕР ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ ГЛАВНОГО ЦИРКУЛЯЦИОННОГО КОНТУРА РЕАКТОРА АЭС
Разработчик (Авторы)Денисов О.В., Кузько Д.А., Прыгунов А.Г., Денисов Д.О.
Вид объекта патентного праваИзобретение
Регистрационный номер 2463496
Дата регистрации07.06.2011
ПравообладательДенисов Олег Викторович, Кузько Дмитрий Анатольевич, Прыгунов Александр Германович, Денисов Данила Олегович
Медаль имени А.Нобеля

Описание изобретения

Изобретение относится к системам сейсмоизоляции. Демпфер содержит двойной полый торсион, выполненный из сплава с эффектом памяти формы. Торсион соединен с рычагом кронштейна крепления оборудования и трубопроводов. На опорной площадке реактора АЭС расположен датчик вибрации, связанный с блоком управления и источником питания. С торсионом соединены подводящие малые трубопроводы, заполненные теплоносителем и соединенные с перепускными клапанами горячего и холодного теплоносителя. Перепускные клапаны связаны кабельными линиями с блоком управления. Перепускной клапан горячего теплоносителя главного циркуляционного контура соединен посредством подводящего малого трубопровода с выходным трактом реактора АЭС. Перепускной клапан холодного теплоносителя главного циркуляционного контура соединен с выходным трактом главного циркуляционного насоса. На торсионе закреплена термопара температурного датчика, связанного кабельной линией с блоком управления. Достигается высокая энергоемкость, эффективное демпфирование колебаний в широком диапазоне рабочих частот и возможность многоразового применения при повторных ударных нагрузках. 2 ил.

 

Изобретение относится к специальному машиностроению, в частности к системам сейсмоизоляции, и может найти применение при создании управляемых упругопластических демпферов функциональных элементов реакторов АЭС.

Естественная тенденция во всем мире - ужесточение нормативных требований к безопасности АЭС и к гарантиям ее обеспечения, а также периодический пересмотр сейсмической балльности площадок действующих АЭС в сторону ее увеличения - вызывают необходимость даже для оборудования, спроектированного и изготовленного в сейсмостойком исполнении, проводить периодические перепроверки и разрабатывать дополнительные антисейсмические мероприятия в процессе эксплуатации АЭС. Особенно актуальна эта проблема для АЭС с большим сроком эксплуатации (20 лет и более), спроектированных либо без требований сейсмостойкости, либо по устаревшим нормативным требованиям и исходным сейсмическим данным.

Известны также системы сейсмоизоляции, выполненные в виде качающихся стоек, дополненные демпферами, при которых защитная оболочка покоится на опорах, выполненных с возможностью их перемещения по фундаментной плите в радиальном направлении.

Известны системы амортизации, упругопластические демпферы, содержащие торсионы, при кручении которых поглощается энергия воздействия, имеющая обычно колебательный характер [1, 2].

Известны управляемые упругопластические торсионные демпферы, у которых упругие свойства рабочих элементов на основе сплава с эффектом памяти формы изменяются при нагревании постоянным током [3, 6].

Прототипом предлагаемой конструкции является управляемая система амортизации, у которой упругие свойства рабочего элемента - полого торсиона, выполненного из сплава с эффектом памяти формы, изменяются при пропускании сквозь него теплоносителя. В качестве теплоносителя используется охлаждающая жидкость [4].

Недостатками прототипа, применительно к управляемому упругопластическому демпферу трубопроводов реактора АЭС, являются невысокая эффективность применения в качестве теплоносителя специальной охлаждающей жидкости, что может задействовать значительное пространство помещений АЭС и ухудшить функциональное совершенство всей системы [7, 8].

При проектировании систем сейсмоизоляции возникает потребность с минимальными энергозатратами при достаточно простой конструкции повысить эффективность и надежность демпфирования колебаний элементов АЭС.

Данная задача может быть решена следующим образом (см Фиг.1, 2): управляемый упругопластический демпфер оборудования и трубопроводов главного циркуляционного контура реактора АЭС, показанный схематично на фигурах 1 и 2, содержит двойной полый торсион 1, выполненный весь или частично из термоупругого демпфирующего сплава с эффектом памяти формы. Средняя часть торсиона 1 соединена с рычагом 2 кронштейна крепления оборудования и трубопроводов 3 главного циркуляционного контура реактора АЭС - объекта демпфирования. Концы торсиона 1 охвачены серьгами 4, позволяющими ему скручиваться при перемещениях рычага 2, и жестко закреплены на опорной площадке 5 реактора АЭС. На опорной площадке 5 расположен датчик вибрации 6, связанный с блоком управления 7 и источником питания 8. С торсионом 1 с одной стороны соединен подводящий малый трубопровод 9, заполненный теплоносителем и соединенный с перепускным клапаном горячего теплоносителя 10 и с перепускным клапаном холодного теплоносителя 11, с другой стороны - выходной малый трубопровод 12, ведущий к входу главного циркуляционного насоса 18. Перепускные клапаны 10 и 11 связаны кабельными линиями 13 с блоком управления 7. Перепускной клапан горячего теплоносителя 10 главного циркуляционного контура соединен посредством подводящего малого трубопровода с выходным трактом реактора 15 АЭС. Перепускной клапан холодного теплоносителя 11 главного циркуляционного контура соединен посредством малого трубопровода 16 с выходным трактом 17 главного циркуляционного насоса 18. Теплоноситель главного циркуляционного контура поступает из теплообменника 19 к главному циркуляционному насосу 18 и является охладителем реактора 15 АЭС. На торсионе 1 закреплена термопара 20 температурного датчика 21, связанного кабельной линией 13 с блоком управления 7.

Работа данного управляемого упругопластического демпфера происходит следующим образом: при отсутствии внутри полого торсиона 1 движения теплоносителя, торсион имеет стабильную температуру, соответствующую температуре отсеков АЭС, и деформируется кручением, с рассеиванием энергии воздействия на объект демпфирования 3, в упругой или упругопластической области. При этом свойства материала практически не изменяются, а пластические деформации не восстанавливаются [6].

В режиме управления демпфированием колебаний, при действии сейсмической знакопеременной нагрузки со стороны внешнего воздействия на объект демпфирования 3, уровень вибрации определяется датчиком 6. В зависимости от уровня вибрации блок управления 7 выдает команды на подачу теплоносителя либо из перепускного клапана горячего теплоносителя 10, либо из перепускного клапана холодного теплоносителя 11 через подводящий малый трубопровод 9 в полость торсиона 1. При изменении температуры торсиона 1, выполненного из термоупругого демпфирующего сплава с эффектом памяти формы, например, на основе системы Ni-Ti, от 20°С до 295°С предел текучести существенно меняется (до 90…115% [6]). Изменяя механические свойства сплава в зависимости от температуры, оказывается существенное влияние на форму упругопластического гистерезиса при кручении торсиона 1 и расширяется диапазон рабочих частот управляемого упругопластического демпфера объекта демпфирования 3. При этом в соответствии с воздействием за счет определенного закона изменения температуры торсиона 1 с учетом инерции можно добиться минимального уровня вибраций оборудования и трубопроводов - объекта демпфирования 3.

При воздействии на объект демпфирования 3 значительной ударной нагрузки, например, в случае землетрясения, происходит пластическое кручение торсиона 1, протекающее с поглощением и рассеянием энергии удара, от датчика вибрации 6 на блок управления 7 подается сигнал, пропорциональный величине удара. По команде блока управления 7 открывается перепускной клапан горячего теплоносителя 10, нагретый в охлаждающем тракте 14 реактора 15 АЭС до температуры 260…290°С [7, 8] под большим давлением теплоноситель поступает по подводящему трубопроводу 9 в торсион 1.

Нагрев торсиона 1 осуществляется до температуры, при которой происходит восстановление формы скрученного торсиона. При этом контроль температуры охлаждающей жидкости осуществляется при помощи термопары 20, закрепленной на торсионе 1, и температурного датчика 21, связанного кабельной линией 13 с блоком управления 7. Сигнал, поступающий с температурного датчика 21 по кабельной линии 13 в блоки управления 7 о нагреве торсиона 1 до температуры выше, например, 260°С, перекрывает перепускной клапан горячего теплоносителя 10 и открывает перепускной клапан холодного теплоносителя 11. Поддерживается требуемая температура.

Возврат рычага 2 управляемого упругопластического демпфера обеспечивается силой термоупругости сплава, из которого выполнен торсион 1, при температуре восстановления формы.

После восстановления формы торсион 1 охлаждается до рабочей температуры теплоносителем, поступающим только из перепускного клапана холодного теплоносителя 11 через подводящий трубопровод 9 в полость торсиона 1.

Управляемый упругопластический демпфер с восстановленным торсионом 1 может работать в условиях повторных воздействий, то есть демпфировать колебания широкого диапазона частот с рабочим ходом рычага 2, при котором деформации в материале торсиона 1 не превышают упругие, а также защищать оборудование и трубопроводы от повторных мощных сейсмических ударов с максимально возможным рабочим ходом рычага, при котором происходит пластическая деформация материала торсиона, после чего вновь следует восстановление формы торсиона.

При работе управляемого упругопластического демпфера блок управления 7 может получать команды непосредственно от центральной системы управления, а в случае ручного управления - от оператора, что может способствовать повышению эффективности работы.

Управляемый упругопластический демпфер позволяет существенно восстановить исходное положение смещенного оборудования и трубопроводов после сейсмических ударов, что снижает длительность нагрузок на конструкционные материалы и, следовательно, вероятность негативного развития аварии.

При этом управляемый упругопластический демпфер имеет высокую устойчивость к радиационному воздействию, агрессивным средам, взрыво- и пожаробезопасность, нетоксичность используемых материалов, малую силу реакции, отсутствие запаздывания срабатывания при динамической нагрузке, возможность регулирования и настройки жесткостных и диссипационных характеристик в процессе эксплуатации.

Положительный эффект обусловлен применением в качестве рабочего элемента управляемого упругопластического демпфера двойного полого торсиона, выполненного из термоупругого демпфирующего сплава с эффектом памяти формы, стойкого к агрессивным средам, снабженного перепускными клапанами, применением в качестве теплоносителя - теплоносителя, поступающего из главного циркуляционного контура реактора АЭС, а также дополнением конструкции термопарой и датчиком температур, соединенным с блоком управления.

Предлагаемый управляемый упругопластический демпфер имеет, по сравнению с прототипом, конструкцию повышенной эффективности, обусловленной использованием тепловой энергии реактора АЭС, обеспечением более эффективной защиты оборудования и трубопроводов от вибрации и повышением надежности и быстродействия многоразового применения при сейсмоударных нагрузках расчетного характера, обусловленными использованием в конструкции датчиков контроля температуры торсиона.

Таким образом, предлагаемый демпфер имеет значительно более надежную конструкцию, которая обладает высокой энергоемкостью, обеспечивает более эффективное демпфирование колебаний в широком диапазоне рабочих частот и имеет повышенное быстродействие многоразового применения при повторных ударных нагрузках.

Формула изобретения

Управляемый упругопластический демпфер оборудования и трубопроводов главного циркуляционного контура реактора атомной электростанции (АЭС), содержащий двойной полый цилиндрический торсион, выполненный весь или частично из термоупругого демпфирующего сплава с эффектом памяти формы, средняя часть которого соединена с рычагом кронштейна крепления оборудования и трубопроводов главного циркуляционного контура реактора АЭС - объекта демпфирования, концы торсиона охвачены серьгами, позволяющими ему скручиваться при перемещениях рычага, и жестко закреплены на опорной площадке реактора АЭС, на которой расположен датчик вибрации, связанный с блоком управления и источником питания, главный циркуляционный контур, состоящий из теплообменника, главного циркуляционного насоса и охлаждающего тракта реактора АЭС, отличающийся тем, что с торсионом с одной стороны соединен подводящий малый трубопровод, заполненный теплоносителем и соединенный с перепускным клапаном горячего теплоносителя и с перепускным клапаном холодного теплоносителя, с другой стороны - выходной малый трубопровод, ведущий к входу главного циркуляционного насоса, перепускные клапаны связаны кабельными линиями с блоком управления, перепускной клапан горячего теплоносителя главного циркуляционного контура соединен посредством подводящего малого трубопровода с выходным трактом реактора АЭС, перепускной клапан холодного теплоносителя главного циркуляционного контура соединен посредством малого трубопровода с выходным трактом главного циркуляционного насоса, теплоноситель главного циркуляционного контура поступает из теплообменника к главному циркуляционному насосу и является охладителем реактора АЭС, на торсионе закреплена термопара температурного датчика, связанного кабельной линией с блоком управления.

Изобретение "УПРАВЛЯЕМЫЙ УПРУГОПЛАСТИЧЕСКИЙ ДЕМПФЕР ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ ГЛАВНОГО ЦИРКУЛЯЦИОННОГО КОНТУРА РЕАКТОРА АЭС" (Денисов О.В., Кузько Д.А., Прыгунов А.Г., Денисов Д.О.) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля