L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

СПОСОБ И УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ПОДЪЕМНОЙ СИЛЫ


НазваниеСПОСОБ И УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ПОДЪЕМНОЙ СИЛЫ
Разработчик (Авторы)Горшков А.А.
Вид объекта патентного праваИзобретение
Регистрационный номер 2225328
Дата регистрации13.06.2001
ПравообладательГоршков Андрей Александрович

Описание изобретения

Изобретение относится к области летательных аппаратов легче воздуха. Устройство содержит замкнутую заполненную воздухом пневмонапряженную оболочку, выполненную с возможностью изменения плотности воздуха как посредством изменения объема полости оболочки, так и посредством изменения количества воздуха в полости оболочки. Пневмонапряженность оболочки обеспечивается натяжением на спиралевидную конструкцию, образованную ребрами жесткости из кевлара. Способ характеризуется использованием упомянутого устройства. Изобретение направлено на повышение безопасности и надежности. 2 с. и 1 з.п. ф-лы, 7 ил.

 

Изобретение относится к области создания летательных аппаратов легче воздуха, в частности к созданию устройств, создающих подъемную силу, достаточную для перемещения грузов или человека.

Известен способ создания подъемной силы путем закачивания в замкнутую герметичную оболочку легкого газа. Для регулирования подъемной силы производят сбрасывание определенного количества балласта и стравливание необходимого количества легкого газа, см., например, Чернов А.А. Путешествия на воздушном шаре. -Л.: Гидрометеоиздат, 1975, с.27.

Устройство для создания подъемной силы в данном случае содержит саму герметичную оболочку, устройства для заполнения ее легким газом, балласт и устройства для сбрасывания балласта и стравливания газа.

Недостатки данных способа и устройства в первую очередь зависят от того, что используется легкий газ, обычно гелий. Этот газ очень летуч. Он довольно легко проникает сквозь поры многих материалов. Герметизация связана с большими трудностями. Кроме того, легкие газы обычно довольно дороги. Есть и дешевые газы, например водород. Но его использование связано с угрозой взрыва.

Разработаны способ для создания подъемной силы без применения легких газов и устройство для осуществления этого способа. В соответствии с этим способом в пространство между двумя концентричными оболочками, соединенными поперечными связями, закачивается воздух до избыточного давления, обеспечивающего жесткость конструкции (отсутствие схлопывания под действием атмосферного давления), когда из внутренней оболочки воздух полностью откачан, см. Броуде В.Г. Воздухоплавательные летательные аппараты. -М.: Машиностроение, 1976, с.89. Автор этой книги расчетами доказывает невозможность обеспечения плавучести такой конструкции, т.к. масса закачанного под избыточным давлением воздуха равна массе воздуха, удаленного из внутреннего пространства.

Известны способ создания подъемной силы и устройство для его осуществления, описанные в патенте РФ 2126342 на изобретение "Безбалластный аэростатический летательный аппарат", МПК В 64 В 1/62, заявлено 31.07.1997, опубликовано 20.02.1999. Создание подъемной силы производится путем изменения плотности воздуха во внутренней замкнутой пневмонапряженной оболочке за счет изменения его массы. Давление воздуха в оболочке может быть больше, меньше и равно атмосферному давлению. При этом для предотвращения схлопывания под действием атмосферного давления полость между внутренней и наружной оболочками заполняют легким газом под избыточным давлением выше атмосферного. Устройство, представляющее собой аэростатический летательный аппарат, содержит пневмонапряженную конструкцию замкнутой формы, образованную из соединенных между собой посредством силовых поперечных связей наружной и внутренней оболочек. Полость между оболочками заполнена легким газом под избыточным давлением выше атмосферного. Внутренняя полость заполнена воздухом. Имеется средство для изменения массы воздуха, заполняющего внутреннюю полость, включающее перепускной клапан, насос и компрессор.

Недостатки указанных способа и устройства в первую очередь связаны с использованием легких газов: трудности в герметизации, высокая себестоимость, угроза взрыва.

Известно выбранное в качестве прототипа устройство для создания подъемной силы, содержащее герметичную гибкую пневмонапряженную оболочку, образующую вакуумную полость, и устройство для расправления оболочки, закрепленное на ней. Устройство для расправления оболочки размещено с внешней стороны оболочки и представляет собой герметичный пневматический элемент (тонкостенный шланг, уложенный на всей поверхности оболочки по спирали, соседние витки которой скреплены между собой, по меньшей мере, в один слой) с внутренней приводной камерой, сообщенной с источником давления. Внутри вакуумной полости размещены силовые элементы.

Способ-прототип, в соответствии с которым действует устройство-прототип, обеспечивает создание подъемной силы путем изменения плотности воздуха в замкнутой пневмонапряженной оболочке за счет изменения объема оболочки.

Недостатками прототипа являются:
- использование в виде ребер жесткости пневмонапряженного шланга под избыточным давлением воздуха, что позволяет эффективно использовать данное устройство в качестве вакуумной камеры, но не сможет обеспечить плавучесть данной конструкции в атмосфере, т.к. количество воздуха, закачиваемого в шланг, равно или выше количества воздуха, вытесняемого оболочкой в атмосфере (даже без учета веса оболочки и шланга);
- ненадежность конструкции из-за невозможности обеспечить необходимую прочность шланга на изгиб или разрыв;
- при разрыве оболочки конструкция cхлопывается, то есть не обеспечивается безопасность.

Задачей заявляемых изобретений является повышение безопасности и надежности.

Указанная задача решается за счет того, что в известном устройстве для создания подъемной силы, содержащем замкнутую пневмонапряженную оболочку, выполненную с возможностью изменения плотности воздуха как посредством изменения объема полости оболочки, так и посредством изменения количества воздуха в полости оболочки, согласно изобретению пневмонапряженность оболочки обеспечена натяжением на спиралевидную конструкцию, образованную ребрами жесткости из кевлара или аналогичного сверхвысокомодульного материала (СВМ).

Кроме того, указанная задача решается за счет того, что устройство снабжено силовым устройством, предназначенным для изменения объема полости оболочки при выполнении спиральной конструкции в виде незамкнутого тора.

Указанная задача решается также за счет того, что в способе создания подъемной силы, согласно изобретению используется устройство по п.1 или 2.

В заявляемом устройстве использована только одна оболочка, в нем нет дополнительных замкнутых полостей для размещения находящегося под давлением воздуха, которые в прототипе предназначены для предотвращения схлопывания под воздействием атмосферного давления.

Возможность сохранять заданную форму и не терять ее под воздействием давления воздуха во внешней среде обеспечивается за счет использования элементов жесткости. При этом при необходимости подъемная сила может изменяться как за счет изменения объема оболочки, так и за счет изменения количества воздуха в ней. И в том и другом случае изменяется плотность воздуха. Совмещение возможностей позволяет выбрать оптимальный вариант подъема.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена схема подъемного устройства; на фиг.2 - схема указанного устройства с учетом прогиба под действием атмосферного давления; на фиг.3 - схема сжатия кольца; на фиг.4 - схема силового воздействия на кольцо; на фиг.5 - форма ребра жесткости в виде овальной трубы; на фиг.6 - схема устройства в виде тора: на фиг.7 - схема устройства в виде незамкнутого тора.

Рассчитаем возможность создания такого подъемного устройства, схема которого представлена на фиг.1.

Пусть данное устройство представляет собой цилиндр длиной Н, радиусом R. Ребра жесткости данного цилиндра выполнены в виде спирали тем же радиусом R и шагом h. Тогда данное устройство можно представить с достаточно большой точностью как составное устройство из N цилиндров с тем же радиусом R и длиной h, где N=Н/h.

Пусть для простоты расчетов R=h=1 м, f=0,1 м - прогиб оболочки под воздействием атмосферного давления (см. фиг.2).

Допустим, что ребро жесткости находится на расстоянии 1/2 h от края, т. е. находится посередине данного цилиндра. Оболочка данного устройства может быть выполнена из дуплекса (двойной пленки) полиэтилена толщиной 0,02 мм и лавсана толщиной δ= 0,8 мм. Предел прочности такой пленки определяется пленкой из лавсана, который равен σ=1700 кг/см2. Тогда для данной конструкции расстояние между ребрами жесткости должно составлять

где Р0 = 1 атм = 1 кг/см2
Тогда h = 104 см = 1 м. Таким образом, при такой оболочке ребра жесткости можно расположить еще шире, если прогиб f будет больше. Поверхностная плотность такого материала составляет ρ=140 г/м2. Общая площадь цилиндра (без учета прогиба и без торцов, так как при достаточно большом количестве N ими можно пренебречь) будет составлять
S=4πR2=12,6 м2,
тогда масса оболочки будет Моболочки=Sρ=1,8 кг.

Объем данного цилиндра будет
V=πR2h=3,14 м3,
тогда при γвоздуха = 1,3 кг/м3 масса вытесняемого воздуха будет
M0 = Vγвоздуха = 4,08 кг.
Тогда при массе оболочки 1,8 кг, чтобы создать равновесное состояние, ребро жесткости, с достаточной точностью представляемое в виде кольца, должно иметь длину L=2πR=6,28 м, плотность на 1 м длины ρ1 = 0,363 кг/м и при h= 1 м и атмосферным давлением P0 = 1 атм = 1 кг/см2 обладать прочностью на сжатие
σ1≥100 кг/см.
Рассчитаем ребро жесткости. Кольцо со всех сторон в любом сечении испытывает только сжатие (см. фиг.3).

Представим, что кольцо находится в равновесии (см. фиг.4), тогда

Следовательно, максимальное давление на сжатие кольца будет
N=PR, где Р=P0h=100 кг/см2 100 см=10000 кг/см
Ребра жесткости, изготовленные в виде кольца с круглым сечением из полимерной пленки, армированной на эпоксидной смоле волокнами из кевлара (характеристики материала ρ= 1380 кг/м3, σ= 14000 кг/см, пусть Nсжатия ≥ 0,5Nрастяжения при потере устойчивости), должны иметь площадь сечения
Sсеч=10000/7000=1,43 см2
Тогда ребра жесткости имеют плотность на 1 м длины ρ1 = 0,197 кг/м.
При изготовлении ребра жесткости в виде овальной трубы (см. фиг.5), где
r - больший радиус овала по центру стенки, a t - толщина стенки трубы, можно значительно повысить (до 40%) жесткостные параметры при той же массе ребер жесткости или значительно уменьшить массу ребер жесткости.

Подъемная сила на один сегмент устройства, длиной и радиусом равными 1 м, будет составлять F=М0оболочкиребра=1 кг.

Таким образом, доказана возможность создания устройства, имеющего меньший вес, чем вес вытесняемого им воздуха, защищенного от схлопывания из-за действия атмосферного давления жестким каркасом. При давлении внутри оболочки Рвнутр>0 прочностные характеристики и оболочки и ребер жесткости можно снижать, тем самым снижая и вес всего устройства. Запас прочности в 40% позволяет в этих же пределах регулировать подъемную силу, изменяя объем устройства за счет изменения величины шага между спиралями h.

Формула изобретения

1. Устройство для создания подъемной силы, содержащее замкнутую пневмонапряженную оболочку, выполненную с возможностью изменения плотности воздуха как посредством изменения объема полости оболочки, так и посредством изменения количества воздуха в полости оболочки, отличающееся тем, что пневмонапряженность оболочки обеспечена натяжением на спиралевидную конструкцию, образованную ребрами жесткости из кевлара.

2. Устройство по п.1, отличающееся тем, что оно снабжено силовым устройством, предназначенным для изменения объема полости оболочки при выполнении спиралевидной конструкции в виде незамкнутого тора.

3. Способ создания подъемной силы, отличающийся тем, что используют устройство по п.1 или 2.

 

Изобретение "СПОСОБ И УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ПОДЪЕМНОЙ СИЛЫ" (Горшков А.А.) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля