Название | УСТРОЙСТВО ДЛЯ СУШКИ СЕЛЬСКОХОЗЯЙСТВЕННОГО КОРМА |
---|---|
Разработчик (Авторы) | Кобелев Николай Сергеевич, Емельянов Алексей Сергеевич, Федоров Сергей Сергеевич, Щедрина Галина Геннадьевна, Гнездилова Ольга Александровна, Корсаков Евгений Александрович, Кузьмин Павел Сергеевич |
Вид объекта патентного права | Изобретение |
Регистрационный номер | 2519786 |
Дата регистрации | 06.12.2012 |
Правообладатель | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) |
Область применения (класс МПК) | A01F 25/08 (2006.01) |
Устройство для сушки сельскохозяйственного корма содержит вентиляционный каркас, соединенный с вентилятором, имеющим нагнетательный патрубок, снабженный соплом с криволинейными канавками, полимерное покрытие корма, имеющее зазор, в котором размещен всасывающий патрубок вентилятора. Корпус сопла выполнен из биметалла, а криволинейные канавки имеют профиль в виде «ласточкина хвоста» и переходят в кольцевую канавку, расположенную на внутренней поверхности сопла за входным отверстием. Вентилятор снабжен приводом с регулятором скорости и регулятором температуры. Датчик температуры расположен в вентиляционном канале. Нагнетательный патрубок вентилятора снабжен термоэлектрическим генератором, который включает корпус с проходным каналом и комплект дифференциальных термопар. В проходном канале корпуса размещены «горячие» концы комплекта дифференциальных термопар, а «холодные» концы расположены на внешней поверхности корпуса. Вход проходного канала посредством сопла соединен с нагнетательным патрубком вентилятора, а выход его соединен с вентиляционным каналом. Изобретение обеспечивает возможность получения дополнительной электрической энергии для питания системы электронного контроля вентилятора в полевых условиях. 3 ил.
Изобретение относится к сельскому хозяйству, а именно к способам заготовки травянистых кормов.
Известно устройство для сушки сельскохозяйственного корма (см. патент на изобретение №2193303, МПК A01F 25/08, опубл. 27.11.2002), содержащее вентиляционный каркас, соединенный с вентилятором, имеющим нагнетательный патрубок, снабженный соплом с криволинейными канавками, полимерное покрытие корма, имеющее зазор, в котором размещен всасывающий патрубок вентилятора, причем корпус сопла выполнен из биметалла, а криволинейные канавки имеют профиль в виде «ласточкина хвоста» и переходят в кольцевую канавку, расположенную на внутренней поверхности сопла за входным отверстием, при этом в нижней части кольцевой канавки размещен сборник загрязнений.
Недостатком данного устройства являются энергозатраты процесса сушки сельскохозяйственного корма из-за отсутствия возможности регулирования мощности, потребляемой вентилятором для подачи воздуха в вентиляционный контур при изменяющихся погодно-климатических условиях воздействия температуры окружающей среды.
Известно устройство для сушки сельскохозяйственного корма (см. патент РФ №2424647, МПК A01F 25/08, опубл. 27.07.2011. Бюл. №21), содержащее вентиляционный каркас, соединенный с вентилятором, имеющим нагнетательный патрубок, снабженный соплом с криволинейными канавками, полимерное покрытие корма, имеющее зазор, в котором размещен всасывающий патрубок вентилятора, при этом корпус сопла выполнен из биметалла, а криволинейные канавки имеют профиль в виде «ласточкина хвоста» и переходят в кольцевую канавку, расположенную на внутренней поверхности сопла за входным отверстием, при этом в нижней части кольцевой канавки размещен сборник загрязнений, а вентилятор снабжен приводом с регулятором скорости в виде блока порошковых электромагнитных муфт, и регулятор температуры включает блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора, кроме того, датчик температуры расположен в вентиляционном канале.
Недостатком является энергоемкость устройства для сушки сельскохозяйственного корма, обусловленная необходимостью использования дополнительной электрической энергии для питания системы электронного контроля работы вентилятора, что требует затрат, связанных с прокладкой электрических сетей, особенно при сушке сельскохозяйственного корма в полевых условиях, т.е. вдали от электроисточников.
Технической задачей предлагаемого изобретение является использование теплового потенциала вентилируемого воздуха для производства электрической энергии посредством термоэлектрического генератора, выполненного в виде корпуса с проходным каналом, и комплект дифференциальных термопар.
Технический результат по снижению энергозатрат достигается тем, что устройство для сушки сельскохозяйственного корма, содержащее вентиляционный каркас, соединенный с вентилятором, имеющим нагнетательный патрубок, снабженный соплом с криволинейными канавками, полимерное покрытие корма, имеющее зазор, в котором размещен всасывающий патрубок вентилятора, при этом корпус сопла выполнен из биметалла, а криволинейные канавки имеют профиль в виде «ласточкина хвоста» и переходят в кольцевую канавку, расположенную на внутренней поверхности сопла за входным отверстием, причем в нижней части кольцевой канавки размещен сборник загрязнений, а вентилятор снабжен приводом с регулятором скорости в виде блока порошковых электромагнитных муфт, и регулятор температуры включает блок сравнения и блок задания, при этом блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора, кроме того, датчик температуры расположен в вентиляционном канале, причем нагнетательный патрубок вентилятора снабжен термоэлектрическим генератором, который включает корпус с проходным каналом и комплект дифференциальных термопар, при этом в проходном канале корпуса термоэлектрического генератора размещены «горячие» концы комплекта дифференциальных термопар, а «холодные» концы расположены на внешней поверхности корпуса вдали от проходного канала, кроме того, вход проходного канала посредством сопла с криволинейными канавками соединен с нагнетательным патрубком вентилятора, а выход его соединен с вентиляционным каналом.
На фиг.1 изображено устройство для сушки сельскохозяйственного корма; на фиг.2 - разрез А-А на фиг.1; на фиг.3 - разрез Б-Б на фиг.1.
Устройство для сушки сельскохозяйственного корма содержит вентиляционный каркас с каналом 1, соединенный с вентилятором 2, с помощью нагнетательного патрубка 3, на котором укреплено дозвуковое сопло 4. Корпус сопла 4 выполнен из биметалла и на внутренней поверхности имеет продольно расположенные от входного отверстия 5 к выходному отверстию 6 криволинейные канавки 7, имеющие профиль в виде «ласточкина хвоста» и переходящие в кольцевую канавку 8. Кольцевая канавка 8 расположена за входным отверстием 5 сопла 4 и соединена в своей нижней части со сборником загрязнений 9. Вентиляционный каркас установлен на площадке 10, на каркасе размещена скирда 11, укрытая полимерным материалом, например, эластичной пленкой 12, с зазором 13 к площадке 10. Всасывающий патрубок 14 вентилятора 2 соединен с зазором 13.
Вентилятор 2 снабжен приводом 15 с регулятором скорости 16 в виде блока порошковых электромагнитных муфт и регулятором температуры 17 с датчиком температуры 18. При этом регулятор температуры 17 включает блок сравнения 19 и блок задания 20, причем блок сравнения 19 соединен с входом электронного усилителя 21, оборудованного блоком нелинейной обратной связи 22, а выход электронного усилителя 21 соединен с входом электромагнитного усилителя 23 с выпрямителем, который на выходе подключен к регулятору скорости 16 в виде блока порошковых электромагнитных муфт привода 15 вентилятора 2, кроме того, датчик температуры 18 расположен в вентиляторном канале.
Нагнетательный патрубок 3 вентилятора 2 снабжен термоэлектрическим генератором 24, который включает корпус 25 с проходным каналом 26 и комплект дифференциальных термопар 27. В проходном канале 26 корпуса 25 термоэлектрического генератора 24 размещены «горячие» концы 28 комплекта дифференциальных термопар 27, а «холодные» концы 29 расположены на внешней поверхности 30 корпуса 25 вдали от проходного канала 26. Вход 31 проходного канала 26 посредством дозвукового сопла 4 с криволинейными канавками 7 соединен с нагнетательным патрубком 3 вентилятора 2, а выход 32 проходного канала 26 соединен с вентиляционным каналом 1, оборудованным полимерным материалом, например, эластичной пленкой 12 и скирдой 11.
Устройство работает следующим образом.
В процессе получения вентилируемого воздуха, температура его повышается, как в результате трения о внутренние поверхности в самом вентиляторе 2, нагнетательном патрубке 3, так и, особенно, в дозвуковом сопле 4 с криволинейными канавками 7, причем превышение температуры воздуха на входе во всасывающий патрубок 14 и на выходе из нагнетательного патрубка 3 составляет от 15°C и выше (см., например, стр.80, Барков Б.В., Карпис Е.Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. М.: Стройиздат. 1988. - 312 с., ил.), при этом нагретый вентиляционный воздух из нагнетательного патрубка 3 через дозвуковое сопло 4 поступает на вход 31 проходного канала 26 корпуса 25 термоэлектрического генератора 24 и контактирует с «горячими» концами 28 комплекта дифференциальных термопар 27. Одновременно «холодные» концы 29 комплекта дифференциальных термопар 27 контактируют с воздухом окружающей среды, имеющим температуру на 15 и более градусов ниже, чем вентилируемый воздух в канале 1. Это приводит к образованию термоЭДС со значением от 5,6 и более мВ, в зависимости от материала комплекта дифференциальных термопар 27 (см., например, Иванова Г.М. Теплотехнические измерения и приборы. М.: Энергоиздат 1984. - 230 е., ил.). В результате на выходе термоэлектрического генератора 24 появляется напряжение от 12 до 36 В (см., например, Технические основы теплотехники. Теплотехнический эксперимент. Справочник под общ. ред. В.М. Зорина. Энергоатомиздат. 1985. - 560 е., ил.).
Этого вполне достаточно для обеспечения питания электронных блоков и усилителей регулятора температуры 17, т.е. устраняется необходимость дополнительного подвода электрической энергии для устройства контроля и регулирования работы вентилятора в изменяющихся погодно-климатических условиях сушки сельскохозяйственного корма.
Подачу воздуха в вентиляционный канал 1 осуществляют вентилятор 2 через нагнетательный патрубок 3, на котором закреплено дозвуковое сопло 4 с криволинейными канавками 7 на внутренней поверхности. Вентиляционный воздух, проходя дозвуковое сопло 4 с криволинейными канавками 7, закручивается.
В зазоре 13 воздух, насыщенный сконденсировавшейся и удаляемый из скирды влагой, имеет температуру, близкую к температуре окружающей среды, что регистрируется датчиком температуры 18, температура воздуха принимается нормированной (например, 20°C) в зависимости от погодно-климатических условий эксплуатации устройства, по которой с учетом оптимизации настраивается скорость вращения привода 15 вентилятора 3 из расчета минимизации энергозатрат на процесс сушки сельскохозяйственного корма. При отклонении температуры воздуха в зазоре 13 в сторону уменьшения сигнал, поступающий с датчика температуры 18, становится меньше, чем сигнал блока задания 20, и на выходе блока сравнения 19 появляется сигнал положительной полярности, который поступает на вход электронного усилителя 21 одновременно с сигналом отрицательной нелинейной обратной связи 22. За счет этого в электронном усилителе 21 компенсируется нелинейность характеристики привода 15 вентилятора 2. Сигнал с выхода электронного усилителя 21 поступает на вход магнитного усилителя 23, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 16 в виде блока порошковых муфт. Положительная полярность сигнала электронного усилителя 21 вызывает увеличение тока возбуждения на выходе магнитного усилителя 23.
В результате повышается момент от привода 15 и вентилятор 2 увеличивает подачу воздуха в вентиляционный канал 1 через скирду 11, просушивает корм и выходит в зазор 13, образованный верхним слоем скирды 11 и внутренней поверхностью эластичной пленки 12, где и конденсируется удаляемая влага. Из зазора 13 отработанный воздух по всасывающему патрубку 14 направляется в вентилятор 2 и далее через нагнетательный патрубок 3 и дозвуковое сопло 4 в вентиляционный канал 1, в результате образуя рециркуляционный контур, с возросшей температурой, обусловленной количеством микрозавихрений по объему скирды под воздействием повышенного температурного напора на элементы обтекаемого просушиваемого сельскохозяйственного корма за счет теплоты трения (см., например, с.235, Цой П.В. Методы расчета отдельных задач тепломассопереноса, М., Энергия, 1971, - 384 е.). Увеличение температуры воздуха рециркуляционого контура осуществляется до достижения нормированной (например, 20°C).
При отклонении температуры воздуха в зазоре 13 в сторону увеличения по сравнению с нормированной, сигнал, поступающий с датчика температуры 18, становится большим, чем сигнал блока задания 20, и на выходе блока сравнения 19 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 21 одновременно с сигналом отрицательной нелинейной обратной связи 22.
За счет этого в электронном усилителе 21 компенсируется нелинейность характеристики привода 15 вентилятора 2. Сигнал с выхода электронного усилителя 21 поступает на вход магнитного усилителя 23, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 21 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 23. В результате понижается момент от привода 15, и вентилятор уменьшает подачу воздуха в вентиляционный канал 1 с последующим снижением температуры рециркуляционного контура.
Оригинальность предлагаемого изобретения заключается в том, что оно позволяет при эксплуатации в изменяющихся погодно-климатических воздействиях окружающей среды снизить энергозатраты на обеспечение работы-устройства для сушки сельскохозяйственного корма путем снабжения вентилятора с нагнетательным патрубком термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом и комплектом дифференциальных термопар, что позволяет, используя тепловой потенциал вентилируемого воздуха, устранить необходимость применения дополнительной электрической энергии, а это особенно энергозатратно при сушке сельскохозяйственного корма в полевых условиях вдали от источников электроэнергии.
Формула изобретения
Устройство для сушки сельскохозяйственного корма, содержащее вентиляционный каркас, соединенный с вентилятором, имеющим нагнетательный патрубок, снабженный соплом с криволинейными канавками, полимерное покрытие корма, имеющее зазор, в котором размещен всасывающий патрубок вентилятора, при этом корпус сопла выполнен из биметалла, а криволинейные канавки имеют профиль в виде «ласточкина хвоста» и переходят в кольцевую канавку, расположенную на внутренней поверхности сопла за входным отверстием, при этом в нижней части кольцевой канавки размещен сборник загрязнений, а вентилятор снабжен приводом с регулятором скорости в виде блока порошковых электромагнитных муфт и регулятором температуры, включающим блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, а выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора, кроме того, датчик температуры расположен в вентиляционном канале, отличающееся тем, что нагнетательный патрубок вентилятора снабжен термоэлектрическим генератором, который включает корпус с проходным каналом и комплект дифференциальных термопар, причем в проходном канале корпуса термоэлектрического генератора размещены «горячие» концы комплекта дифференциальных термопар, а «холодные» концы расположены на внешней поверхности корпуса вдали от проходного канала, кроме того, вход проходного канала посредством сопла с криволинейными канавками соединен с нагнетательным патрубком вентилятора, а выход его соединен с вентиляционным каналом.