L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

Способ электронно-лучевой обработки изделия из технического титана ВТ1-0


НазваниеСпособ электронно-лучевой обработки изделия из технического титана ВТ1-0
Разработчик (Авторы)Коновалов Сергей Валерьевич, Комиссарова Ирина Алексеевна, Романов Денис Анатольевич, Иванов Юрий Фёдорович, Громов Виктор Евгеньевич
Вид объекта патентного праваИзобретение
Регистрационный номер 2616740
Дата регистрации23.09.2015
ПравообладательФедеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет"
Область применения (класс МПК)C21D 9/22 (2006.01), C21D 1/09 (2006.01), C23C 26/00 (2006.01)

Описание изобретения

Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности к получению на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения. Способ включает импульсно-периодическое воздействие на поверхность технического титана ВТ1-0 сильноточным электронным пучком с энергией электронов 10…30 кэВ в среде аргона при остаточном давлении 0,02…0,03 Па, поглощаемой плотности энергии 10…30 Дж/см2, длительности импульсов 100…150 мкс и количестве импульсов 1…3. 1 ил., 1 табл., 3 пр.

 

Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности к получению на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения.

Известен способ [1] нанесения покрытий на основе карбида титана на титановые сплавы, включающий приготовление смеси сплава титана и структурно-свободного углерода в форме графита с последующим высокотемпературным реагированием, смесь сплава титана и графита готовят в едином технологическом процессе путем электрического взрыва углеграфитовых волокон, формирования из продуктов взрыва импульсной многофазной плазменной струи, содержащей частицы углеграфитовых волокон, оплавления ею упрочняемой поверхности титанового сплава в режиме, когда поглощаемая плотность мощности составляет 4,5…6,5 ГВт/м2, внесения в расплав частиц углеграфитовых волокон и последующей самозакалки расплава при теплоотводе в объем основы, а высокотемпературное реагирование компонентов смеси осуществляют путем импульсно-периодического воздействия на упрочняемую поверхность после электровзрывного науглероживания сильноточным электронным пучком в режиме, когда поглощаемая поверхностью плотность энергии составляет 40…60 Дж/см2, длительность импульсов - 150…200 мкс, количество импульсов - 10…30.

Недостатком способа является его многостадийный характер, что ограничивает его производительность, ограниченная площадь воздействия электровзрывной обработки, а также невозможность формирования на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой.

Наиболее близким к заявляемому является способ [2] электронно-пучкового упрочнения твердосплавного инструмента или изделия, преимущественно из твердого сплава на основе карбида титана с никельхромовой связкой, включающий облучение рабочей поверхности инструмента или изделия импульсным сильноточным электронным пучком с энергией электронов 10…30 кэВ при длительности импульсов облучения 150-200 мкс и количеством импульсов 10…30, отличающийся тем, что упомянутое облучение проводят в азотсодержащей плазме газового разряда при давлении азота 0,02…0,03 Па с плотностью энергии в электронном пучке, составляющей 50…70 Дж/см2.

Недостатком способа является его многостадийный характер, что ограничивает его производительность, а также невозможность формирования на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой.

Задачей заявляемого изобретения является получение на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, обладающих высоким значением многоциклового усталостного разрушения.

Поставленная задача реализуется способом электронно-лучевой обработки изделия из технического титана ВТ1-0. Способ включает облучение поверхности изделия импульсным сильноточным электронным пучком с получением поверхностных слоев с градиентной многофазной структурой путем импульсно-периодического воздействия сильноточным электронным пучком с энергией электронов 10…30 кэВ в среде аргона при остаточном давлении 0,02…0,03 Па, поглощаемой плотности энергии 10…30 Дж/см2, длительности импульсов 100…150 мкс и количестве импульсов 1…3.

Преимущество заявляемого способа по сравнению с прототипом заключается в формировании на техническом титане ВТ1-0 поверхностного слоя с градиентной многофазной структурой, что делает возможным осуществление локального упрочнения поверхности деталей из технического титана ВТ1-0 в местах их наибольшего разрушения в условиях эксплуатации.

Способ поясняется чертежом, где на фиг. 1 представлена зависимость циклов до разрушения от поглощаемой плотности энергии для технического титана ВТ1-0. В таблице приведены данные испытаний технического титана ВТ1-0 на многоцикловую усталость по [3] при комнатной температуре. Для испытаний изготавливали образцы III типа [3].

Импульсно-периодическое воздействие на поверхность технического титана ВТ1-0 сильноточным электронным пучком с энергией электронов 10…30 кэВ в среде аргона при остаточном давлении 0,02…0,03 Па, поглощаемой плотности энергии 10…30 Дж/см2, длительности импульсов 100…150 мкс и количестве импульсов 1…3 приводит к формированию поверхностных слоев с градиентной многофазной структурой. Толщина поверхностного слоя достигает 5…10 мкм. Указанный режим является оптимальным, поскольку при энергии электронов ниже 10 кэВ в среде аргона при остаточном давлении ниже 0,02, поглощаемой плотности энергии ниже 10 Дж/см2, длительности импульсов ниже 100 мкс и количестве импульсов менее 1 не происходит формирование поверхностных слоев на техническом титане ВТ1-0 с градиентной многофазной структурой. При энергии электронов выше 30 кэВ в среде аргона при остаточном давлении выше 0,03, поглощаемой плотности энергии выше 30 Дж/см2, длительности импульсов выше 120 мкс и количестве импульсов более 3 происходит формирование рельефа поверхности и интенсивное испарение технического титана ВТ1-0.

Формула изобретения

Способ электронно-лучевой обработки изделия из технического титана ВТ1-0, включающий облучение поверхности изделия импульсным сильноточным электронным пучком с получением поверхностных слоев с градиентной многофазной структурой путем импульсно-периодического воздействия сильноточным электронным пучком с энергией электронов 10…30 кэВ в среде аргона при остаточном давлении 0,02…0,03 Па, поглощаемой плотности энергии 10…30 Дж/см2, длительности импульсов 100…150 мкс и количестве импульсов 1…3.

Изобретение "Способ электронно-лучевой обработки изделия из технического титана ВТ1-0" (Коновалов Сергей Валерьевич, Комиссарова Ирина Алексеевна, Романов Денис Анатольевич, Иванов Юрий Фёдорович, Громов Виктор Евгеньевич) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля