L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

СПОСОБ РЕНТГЕНОВСКОЙ ТОМОГРАФИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ


НазваниеСПОСОБ РЕНТГЕНОВСКОЙ ТОМОГРАФИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Разработчик (Авторы)Сырямкин Владимир Иванович, Буреев Артем Шамильевич, Васильев Александр Владимирович, Глушков Глеб Сергеевич, Богомолов Евгений Николаевич, Бразовский Василий Владимирович, Шидловский Станислав Викторович, Горбачев Сергей Викторович, Бородин Владимир Алексеевич, Осипов Артем Владимирович, Шидловский Виктор Станиславович, Осипов Юрий Мирзоевич, Осипов Олег Юрьевич, Ткач Александр Александрович, Повторев Владимир Михайлович
Вид объекта патентного праваИзобретение
Регистрационный номер 2505800
Дата регистрации10.05.2012
ПравообладательФедеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет"
Область применения (класс МПК)G01N 23/04 (2006.01)

Описание изобретения

Использование: для рентгеновской томографии. Сущность способа: заключается в том, что облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом восстанавливают изображения по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта. Способ отличается тем, что восстановление трехмерного изображения осуществляют при вращении и смещении объекта по трем взаимно перпендикулярным осям системы координат, связанной с рабочей зоной объекта при корректировке управления последней, а текущие и эталонные интегральные характеристики изображения объекта формируют в виде спектральных и фрактальных признаков. Технический результат: повышение точности оценки внутренней структуры объекта, быстродействия, расширение функциональных возможностей (расширение класса диагностируемых объектов) и снижение опасности применения для обслуживающего персонала из-за значительного рентгеновского облучения. 2 н. и 14 з.п. ф-лы, 17 ил.

 

Группа изобретений относится к способу рентгеновской томографии и устройству для его осуществления. Область применения охватывает техническую диагностику, например, исследование и аттестацию материалов.

Известны и широко применяются различные способы и устройства рентгеновской томографии, например, рентгеновской диагностики [1, 2].

Существенным признаком этих способов и устройств является то, что формируется рентгеновское излучение, которым облучается объект исследования. По анализу проходящего через объект исследования излучения выносится решение о характеристиках внутренней структуры объекта.

Недостатки способов и устройств заключаются в низкой точности оценки внутренней структуры объекта, малом быстродействии, низких функциональных возможностях (незначительный класс диагностируемых объектов) и опасностью применения для обслуживающего персонала из-за значительного рентгеновского облучения.

В качестве прототипа рассмотрим способ, реализующий рентгеновскую компьютерную томографию [3]. Устройство, реализующее этот способ, содержит блок рентгеновского излучателя, блок электромеханики, выполненный с возможностью обеспечения сканирующих перемещений блока рентгеновского излучателя, на пути выходного рентгеновского пучка которого последовательно расположены исследуемый объект и соответствующий детектор.

Недостатки способа и устройства заключаются в низкой точности восстановления внутренней структуры объекта, невысоких функциональных возможностях, невозможности дефектоскопии объекта, формирования трехмерных цветных псевдоизображений и передачи информации в сеть Интернет, исключения рентгеновского излучения для обслуживающего персонала, отсутствии удобства в работе.

Задача состоит в повышении точности восстановления трехмерной структуры объекта, расширении функциональных возможностей, повышении удобства работы и исключении опасного рентгеновского излучения для обслуживающего персонала.

Решение поставленной задачи достигается тем, что как и в известном способе, в заявленном способе рентгеновской томографии, заключающимся в том, что, облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом, восстанавливают изображения по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта.

Отличие заключается в том, что восстановление трехмерного изображения осуществляют при вращении и смещении объекта по трем взаимно перпендикулярным осям системы координат, связанной с рабочей зоной объекта при корректировке управления последней, а текущие и эталонные интегральные характеристики изображения объекта формируют в виде спектральных и фрактальных признаков.

Кроме того, геометрические признаки локальных и интегральных участков изображений объекта определяют в виде периметров, площадей, радиусов, длины, ширины, количества точек перегиба контура, геометрических центров элементов изображений.

Также формируют псевдоцветные изображения внутренней микроструктуры объекта.

И уменьшают до безопасного уровня рентгеновское излучение и вибрацию.

Поставленная задача достигается также, что как и известное заявленное устройство рентгеновской томографии содержит последовательно соединенные блок рентгеновского излучения, объект, блок детекторов, первый аналого-цифровой преобразователь и электронно-вычислительную машину, ко второму входу которой подключен второй аналого-цифровой преобразователь, входом соединенный через блок измерения энергетического спектра рентгеновского излучения с вторым выходом блока детектора, а выход электронно-вычислительной машины подключен к блоку электромеханики.

Новым является то, что оно дополнительно содержит, во-первых, последовательно соединенные двунаправленными линиями, введенными между дополнительными выходами и входами электронно-вычислительной машины блок восстановления трехмерных изображений, блок формирования цветных псевдоизображений, блок связи с Интернетом, отдельным входом, подключенным через блок дефектоскопии к отдельному выходу блока восстановления трехмерных изображений, и блок нейросетевого метрологического обеспечения, во-вторых, управляемая рабочая зона, введенная между выходами и входами объекта и блока электромеханики, отдельными двунаправленными линиями, подключенными через блок адаптивного структурно-перестраиваемого управления, соединенным отдельной двунаправленной связью с управляемой рабочей зоной, к электронно-вычислительной машине, в-третьих, между дополнительными выходом и выходом объекта и входами выходами электронно-вычислительной машины включены блок лазерного оптико-телевизионного метрологического обеспечения и второй интерфейс, соединенные двунаправленными линиями, в-четвертых, защитный корпус от рентгеновского излучения и вибрации, отдельным выходом подключенным к второму выходу блока рентгеновского излучения, а первым выходом подключенным к отдельным входам блока рентгеновского излучения, объекта, блока электромеханики, блока детекторов, блока измерения энергетического спектра рентгеновского излучения, первый аналого-цифровой преобразователь, второй аналогово-цифровой преобразователь, блок нейросетевого метрологического обеспечения, блок дефектоскопии, блок восстановления трехмерных изображений и блок формирования цветных псевдоизображений, а другими двунаправленными линиями соединенным с управляемым источником питания, блока регулирования температуры и адаптивного блока виброизоляции, подключенного отдельными двунаправленными линиями через интерфейс к электронно-вычислительной машине, причем, во-первых, блок регулирования температуры соединен двумя отдельными двунаправленными линиями с интерфейсом, а другой отдельной двунаправленной линией соединен с защитным корпусом от рентгеновского излучения и вибрации, во-вторых, управляемый источник питания соединен отдельными двунаправленными линиями с интерфейсом, а выходом - со всеми блоками устройства, в-третьих, блок формирования цветных псевдоизображений подключен к монитору.

Кроме того, управляемая рабочая зона выполнена в виде электромехатронного модуля на основе магнитопроводов-роторов, имеющих возможность смещать исследуемый объект по трем взаимно-перпендикулярным направлениям и разворачивать исследуемый объект вокруг трех взаимно перпендикулярных осей.

Кроме того, упомянутый блок адаптивного структурно-перестраиваемого управления выполнен в виде системы автоматического регулирования с переменной структурой.

Упомянутый блок адаптивного структурно-перестраиваемого управления выполнен в виде системы автоматического регулирования с переменной структурой;

Упомянутый блок лазерного оптико-телевизионного метрологического обеспечения выполнен в виде триангуляционного измерителя положения исследуемого объекта;

Упомянутый блок нейросетевого метрологического обеспечения выполнен в виде адаптивной схемы, содержащей обучаемый слой нейронов и выходной слой нейронов, обеспечивающих калибровку изображений при его четкой и нечеткой кластеризации;

Упомянутый блок восстановления трехмерных изображений выполнен в виде последовательных схем захвата теневых проекций, реконструкции виртуальных сечений, создания предварительных сечений и построения ЗВ-изображения;

Упомянутый блок дефектоскопии выполнен в виде последовательных схем реконструкции методом пространственной области, градиентным методом, корреляционным методом, нейронных сетей и схемы обозначения дефектов, управляемых по запросу пользователя на поиск и анализ дефектов;

Упомянутый блок формирования цветных псевдоизображений выполнен в виде последовательности схем оценки плотностей слоев 3D-реконструкции, сопоставления псевдоцветов различным слоям 3D-реконструкции и формирования 3D-псевдореконструкции изображений;

Упомянутый защитный корпус от рентгеновского излучения выполнен в виде экрана рентгеновского излучения на основе многослойного защитного материала;

Упомянутый адаптивный блок виброизоляции выполнен в виде пружинно-механических демпферов;

Упомянутый блок регулирования температуры выполнен в виде адаптивного регулятора температуры внутри корпуса томографа, содержащего воздушную принудительную вентиляцию и водяной отвод тепла;

Упомянутый управляемый источник питания выполнен в виде бесперебойного источника питания, содержащего блок аккумуляторов, блок солнечной батареи и блок питания от электрической сети.

Формула изобретения

1. Способ рентгеновской томографии, заключающийся в том, что облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом восстанавливают изображения по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта, отличающийся тем, что восстановление трехмерного изображения осуществляют при вращении и смещении объекта по трем взаимно перпендикулярным осям системы координат, связанной с рабочей зоной объекта при корректировке управления последней, а текущие и эталонные интегральные характеристики изображения объекта формируют в виде спектральных и фрактальных признаков.

2. Способ по п.1, отличающийся тем, что геометрические признаки локальных и интегральных участков изображений объекта определяют в виде периметров, площадей, радиусов, длины, ширины, количества точек перегиба контура, геометрических центров элементов изображений.

3. Способ по п.1, отличающийся тем, что формируют псевдоцветные изображения внутренней микроструктуры объекта.

4. Способ по п.1, отличающийся тем, что уменьшают до безопасного уровня рентгеновское излучение и вибрацию.

5. Устройство рентгеновской томографии, содержащее последовательно соединенные блок рентгеновского излучения, объект, блок детекторов, первый аналого-цифровой преобразователь и электронно-вычислительную машину, к второму входу которой подключен второй аналого-цифровой преобразователь, входом соединенный через блок измерения энергетического спектра рентгеновского излучения с вторым выходом блока детектора, а выход электронно-вычислительной машины подключен к блоку электромеханики, отличающееся тем, что оно дополнительно содержит, во-первых, последовательно соединенные двунаправленными линиями, введенными между дополнительными выходами и входами электронно-вычислительной машины, блок восстановления трехмерных изображений, блок формирования цветных псевдоизображений, блок связи с Интернетом, отдельным входом подключенный через блок дефектоскопии к отдельному выходу блока восстановления трехмерных изображений, и блок нейросетевого метрологического обеспечения, во-вторых, содержит управляемую рабочую зону, введенную между выходами и входами объекта и блока электромеханики, отдельными двунаправленными линиями, подключенными через блок адаптивного структурно-перестраиваемого управления, соединенный отдельной двунаправленной связью с управляемой рабочей зоной, к электронно-вычислительной машине, в-третьих, между дополнительными выходом и входом объекта и входами и выходами электронно-вычислительной машины включены блок лазерного оптико-телевизионного метрологического обеспечения и второй интерфейс, соединенные между собой двунаправленными линиями, в-четвертых, содержит защитный корпус от рентгеновского излучения и вибрации, отдельным выходом подключенный к второму выходу блока рентгеновского излучения, а первым выходом подключенный к отдельным входам блока рентгеновского излучения, объекта, блока электромеханики, блока детекторов, блока измерения энергетического спектра рентгеновского излучения, первого аналого-цифрового преобразователя, второго аналогово-цифрового преобразователя, блока нейросетевого метрологического обеспечения, блока дефектоскопии, блока восстановления трехмерных изображений и блока формирования цветных псевдоизображений, а другими двунаправленными линиями соединенным с управляемым источником питания, блока регулирования температуры и адаптивного блока виброизоляции, подключенного отдельными двунаправленными линиями через интерфейс к электронно-вычислительной машине, причем, во-первых, блок регулирования температуры соединен двумя отдельными двунаправленными линиями с первым интерфейсом, а другой отдельной двунаправленной линией соединен с защитным корпусом от рентгеновского излучения и вибрации, во-вторых, управляемый источник питания соединен отдельными двунаправленными линиями с интерфейсом, а выходом - со всеми блоками устройства, в-третьих, блок формирования цветных псевдоизображений подключен к монитору.

6. Устройство по п.5, отличающееся тем, что управляемая рабочая зона выполнена в виде мехатронного модуля на основе магнитопроводов-роторов, имеющих возможность смещать исследуемый объект по трем взаимно перпендикулярным направлениям и разворачивать исследуемый объект вокруг трех взаимно перпендикулярных осей.

7. Устройство по п.5, отличающееся тем, что упомянутый блок адаптивного структурно-перестраиваемого управления выполнен в виде системы автоматического регулирования с переменной структурой.

8. Устройство по п.5, отличающееся тем, что упомянутый блок лазерного оптико-телевизионного метрологического обеспечения выполнен в виде триангуляционного измерителя положения исследуемого объекта.

9. Устройство по п.5, отличающееся тем, что упомянутый блок нейросетевого метрологического обеспечения выполнен в виде адаптивной схемы, содержащей обучаемый слой нейронов и выходной слой нейронов, обеспечивающих калибровку изображений при его четкой или нечеткой кластеризации.

10. Устройство по п.5, отличающееся тем, что упомянутый блок восстановления трехмерных изображений выполнен в виде последовательных схем захвата теневых проекций, реконструкции виртуальных сечений, создания предварительных сечений и построения 3D-изображения.

11. Устройство по п.5, отличающееся тем, что упомянутый блок дефектоскопии выполнен в виде последовательных схем реконструкции методом пространственной области, градиентным методом, корреляционным методом, методом нейронных сетей и схемы обозначения дефектов, управляемых по запросу пользователя на поиск и анализ дефектов.

12. Устройство по п.5, отличающееся тем, что упомянутый блок формирования цветных псевдоизображений выполнен в виде последовательности схем оценки плотностей слоев 3D-реконструкции, сопоставления псевдоцветов различным слоям 3D-реконструкции и формирования 3D-псевдореконструкции изображений.

13. Устройство по п.5, отличающееся тем, что упомянутый защитный корпус от рентгеновского излучения выполнен в виде экрана рентгеновского излучения на основе многослойного защитного материала.

14. Устройство по п.5, отличающееся тем, что упомянутый адаптивный блок виброизоляции выполнен в виде пружинно-механических демпферов.

15. Устройство по п.5, отличающееся тем, что упомянутый блок регулирования температуры выполнен в виде адаптивного регулятора температуры внутри корпуса томографа, содержащего воздушную принудительную вентиляцию и водяной отвод тепла.

16. Устройство по п.5, отличающееся тем, что упомянутый управляемый источник питания выполнен в виде бесперебойного источника питания, содержащего блок аккумуляторов, солнечную батарею и блок питания от электрической сети.

               

Изобретение "СПОСОБ РЕНТГЕНОВСКОЙ ТОМОГРАФИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ" (Сырямкин Владимир Иванович, Буреев Артем Шамильевич, Васильев Александр Владимирович, Глушков Глеб Сергеевич, Богомолов Евгений Николаевич, Бразовский Василий Владимирович, Шидловский Станислав Викторович, Горбачев Сергей Викторович, Бородин Владимир Алексеевич, Осипов Артем Владимирович, Шидловский Виктор Станиславович, Осипов Юрий Мирзоевич, Осипов Олег Юрьевич, Ткач Александр Александрович, Повторев Владимир Михайлович) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля