L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

Нефтяной кокс для асфальтобетонной смеси


Название Нефтяной кокс для асфальтобетонной смеси
Разработчик (Авторы)Кемалов Алим Фейзрахманович, Брызгалов Николай Иннокентьевич, Кемалов Руслан Алимович, Суворов Алексей Анатольевич, Хабиров Спартак Галимзянович, Риффель Данил Владимирович, Валиев Динар Зиннурович, Абдрафикова Ильмира Маратовна
Вид объекта патентного праваИзобретение
Регистрационный номер 2754902
Дата регистрации08.09.2021
Правообладательфедеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ), Кемалов Алим Фейзрахманович, Брызгалов Николай Иннокентьевич, Кемалов Руслан Алимович
Область применения (класс МПК)C04B 26/26 (2006.01) C08L 95/00 (2006.01) C08K 3/04 (2006.01)

Описание изобретения

Изобретение относится к строительным составам, конкретно - к порошкам для асфальтобетонной смеси, и может найти применение в дорожном строительстве. Технический результат заключается в повышении эксплуатационных свойств дорожного покрытия: водостойкости, износостойкости, адсорбционной активности и низкой себестоимости, а также могут более эффективно заменить известные минеральные порошки. Нефтяной кокс для асфальтобетонной смеси, отличающийся тем, что состоит из коксового порошка с размерами частиц 1–5 мкм, механоактивированного при температуре 30-70 °С. 4 ил.

 

Изобретение относится к строительным составам, конкретно - к порошкам для асфальтобетонной смеси, и может найти применение в дорожном строительстве.

В настоящее время в качестве порошков для асфальтобетонных смесей традиционно используются минеральные порошки, имеющие недостаточно высокие показатели по адгезии и прочностным характеристикам.

В последнее время ведутся разработки по получению порошка для асфальтобетонных смесей из других видов сырья, в частности, высокоуглеродистых материалов в виде нефтяного кокса, который выгодно отличается от традиционно используемых видов минеральных порошков более высокими потребительскими качественными показателями, среди которых наиболее важными являются адгезия и высокие прочностные характеристики.

Из исследованного уровня техники заявителем выявлено изобретение по патенту RU 2568620 «Способ получения и состав активированного армированного минерального порошка». Сущностью является активированный армированный минеральный порошок для асфальтобетонной смеси, характеризующийся тем, что он содержит однородную смесь из измельченных минерального компонента в виде карбонатной породы, преимущественно кубовидной формы, армирующей добавки в виде распушенных волокон и гидрофобизатора в виде жирной кислоты, равномерно распределенного по поверхности минерального компонента и армирующей добавки, при следующем соотношении компонентов, %:

указанный гидрофобизатор 0,1-5,0;

волокна 0,5-15,0;

карбонатная порода остальное.

Активированный армированный минеральный порошок для асфальтобетонной смеси по п. 6, отличающийся тем, что в качестве армирующей добавки содержит волокна целлюлозы, или асбеста, или базальта. Активированный армированный минеральный порошок для асфальтобетонной смеси по п. 6, отличающийся тем, что в качестве армирующей добавки содержит смесь волокон.

К недостаткам известного изобретения следует отнести использование жирных кислот, которые подвержены процессу окислительного старения, что, как следствие, приводят к преждевременному старению асфальтобетонной смеси при длительной его эксплуатации. Недостатком известного технического решения является также то, что необходимо в процессе помола вводить ряд других активирующих агентов.

Целью заявленного технического решения является получение нового высокоэффективного вида порошка для асфальтобетонных смесей на основе товарного нефтяного кокса и его нецелевых фракций, обладающие повышенной водостойкостью, адсорбционной активностью и низкой себестоимостью, которые могут более эффективно заменить известные минеральные порошки.

Техническим результатом заявленного технического решения является коксовый порошок с размерами частиц (дисперсностью) 1–5 микрометров (мкм), добавляемый в асфальтобетонные смеси дорожных покрытий и обеспечивающий повышенные эксплуатационные свойства, дорожного покрытия, например – водостойкость, износостойкость, адсорбционную активность и низкую себестоимость, а также могут более эффективно заменить известные минеральные порошки.

Сущностью заявленного технического решения является нефтяной кокс для асфальтобетонной смеси, отличающийся тем, что состоит из коксового порошка с размерами частиц 1–5 мкм, механоактивированного при температуре 30-70 °С.

Заявленное техническое решение иллюстрируется Фиг.1 – Фиг.4.

На Фиг.1 представлена схема лабораторной дезинтеграторной установки, где:

1 – электродвигатели; 2 – диск; 3 – приемный бункер; 4 – шнек; 5 – палец; 6 – накопительный бункер.

На Фиг.2 приведена Таблица 1, в которой представлены физико-химические показатели кокса нефтяного анодного.

На Фиг.3 приведена Таблица 2, в которой представлены сравнительные физико-химические показатели заявленного коксового порошка и минерального порошка по аналогу.

На Фиг.4 приведена Таблица 3, в которой представлены физико-механические показатели асфальтобетонной смеси.

Поставленная цель и заявленный технический результат достигается за счет того, что нефтяной кокс подвергают механоактивации в интервале температур 30-70 °С до достижения размеров частиц 1-5 мкм.

Механоактивация способствует решению поставленной задачи. Механоактивацию проводят в измельчительных устройствах при свободном ударе или при стесненном ударе с истиранием, например:

- в струйной мельнице измельчение проводят при давлении 0,4 - 1,0 МПа,

- в дезинтеграторе измельчение проводят при скорости соударения частиц 60 - 250 м/с,

- в шаровой мельнице измельчение проводят на протяжении 5 - 60 минут,

- в дисковой мельнице измельчение проводят на протяжении 5 - 60 минут,

- в планетарной мельнице измельчение проводят в течение 1 - 5 минут.

Нефтяной кокс (углерод нефтяного происхождения) представляет собой пористую твердую неплавкую массу от темно-серого до черного цвета. Он состоит из высоко-конденсированных и высоко-ароматизированных полициклических углеводородов с небольшим содержанием водорода, а также других органических соединений.

Элементный состав сырого (не прокаленного) нефтяного кокса, % мас.: C: 91-99,5; H: 0,035-4; S: 0,5-8; (N+O): 1,3-3,8; редкоземельные металлы – остальное.

Известно, что на установках замедленного коксования накапливается значительное количество тонкодисперсных отходов кокса с размерами частиц от нескольких микрон до 6 мм – так называемой коксовой мелочи, которая не находит квалифицированного применения и требует дополнительных затрат на утилизацию. Однако такие отходы могут служить сырьем для получения ценных продуктов и топлива с высоким содержанием углерода, в частности для добавки в роли минерального порошка в асфальтобетонную смесь.

В результате применения механоактивации при измельчении получается активированный коксовый порошок, обладающий повышенной водостойкостью, адсорбционной активностью и, что очень важно, низкой себестоимостью.

Принцип механоактивации в дезинтеграторной установке (Фиг.1) заключается в следующем: после подачи напряжения на электродвигатели 1 их роторы и соединенные с ними диски 2 дезинтегратора начинают вращаться в разные стороны, затем нефтяной кокс засыпается в приемный бункер 3, откуда он шнеком 4 подается в рабочее пространство мельницы. Далее частицы материала, попав на первый круг пальцев 5, получают скорость, соответствующую скорости пальцев 5, и с этой скоростью вылетают из круга. При этом их путь направлен в одну сторону с вектором скорости тех пальцев 5, от которого они ушли, и пересекают траекторию движения второго ряда пальцев 5 (движущегося в противоположном направлении). После многократного соударения с пальцами 5 частицы размалываемого материала, вылетев из внешнего круга пальцев 5, ударяются о внутреннюю часть кожуха и самотёком опускаются в нижнее его отверстие, попадая затем в накопительный бункер 6.

Физико-химические показатели товарного и измельченного кокса нефтяного анодного приведены в Таблице 1 на Фиг.2.

Сравнительная характеристика полученного коксового порошка и традиционного минерального порошка приведены в Таблице 2 на Фиг.3.

Как видно из Таблицы 2, заявленный коксовый порошок для асфальтобетонных смесей имеет следующие преимущества по сравнению с известным аналогом:

- не требует активации, в частности, совместным помолом с другими активизирующими ингредиентами по сравнению с аналогом;

- коксовый порошок с участием битума обладает повышенной водостойкостью;

- более низкий показатель битумоемкости;

- снижение себестоимости за счет использования нецелевых фракций нефтяного кокса;

- расширение сырьевой базы получения коксового порошка за счет местных сырьевых ресурсов.

Заявленный коксовый порошок был испытан в соответствии с ГОСТ 9128-2013 «Смеси асфальтобетонные, полимерасфальтобетонные, асфальтобетон, полимерасфальтобетон для автомобильных дорог и аэродромов. Технические условия» [105] в аккредитованной испытательной лаборатории дорожной организации. Результаты представлены в Таблице 3 на Фиг.4.

Пример 1. Получение асфальтобетонной смеси с содержанием коксового порошка 8% мас.

Товарный нефтяной кокс и его исходную мелочь с размером частиц менее 30 мм измельчают в лабораторном дезинтеграторе при 50 °C и скорости соударения частиц 200 м/с. В результате получают активированный коксовый порошок с размером частиц в интервале от 1 до 5 мкм.

Полученный таким образом коксовый порошок направляют без подогрева в асфальтосмесительное устройство через дозатор. Одновременно в этот аппарат в нагретом состоянии (180 – 200 °C) загружают песок, щебень и горячий битум (160 °C) в заданных соотношениях. Полученную смесь перемешивают в нагретом состоянии в течение 3 минут. Затем готовую смесь выгружают и приготавливают образцы для дальнейший физико-механических испытаний по стандартной методике. Состав асфальтобетонной смеси: щебень 48%, коксовый порошок 8%, песок 38%, битум 6% на минеральную смесь. Результаты показателей свойств асфальтобетона, приготовленного с заявленным активированным коксовым порошком по сравнению с аналогом, представлены в Таблице 3 на Фиг.4.

Далее в Примерах 2-4 показана взаимосвязь количества коксового порошка и дисперсии с физико-механическим характеристикам асфальтобетонной смеси.

Пример 2. Получение асфальтобетонной смеси с содержанием коксового порошка 10% мас.

Содержание коксового порошка в асфальтобетонной смеси составляет 10%. Измельчение проводят при 50 °C в дезинтеграторе при скорости соударения частиц 150 м/с. В результате получают порошок с размером частиц 6-10 мкм. Состав асфальтобетонной смеси: щебень 48%, коксовый порошок 10%, песок 36%, битум 6% в расчете на минеральную смесь.

Пример 3. Получение асфальтобетонной смеси с содержанием коксового порошка 6% мас.

Содержание коксового порошка в асфальтобетонной смеси составляет 6%. Измельчение проводят при 50 °C в дезинтеграторе при скорости соударения частиц 150 м/с. В результате получают порошок с размером частиц 6-10 мкм. Состав асфальтобетонной смеси: щебень 48%, коксовый порошок 6%, песок 40%, битум 6% в расчете на минеральную смесь.

Пример 4. Получение асфальтобетонной смеси с содержанием коксового порошка 12% мас.

Содержание коксового порошка в асфальтобетонной смеси составляет 12%. Измельчение проводят при 50 °C в дезинтеграторе при скорости соударения частиц 200 м/с. В результате получают порошок с размером частиц 1-5 мкм. Состав асфальтобетонной смеси: щебень 46%, коксовый порошок 12%, песок 36%, битум 6% в расчете на минеральную смесь.

Из приведенных Примеров можно сделать вывод, что снижение содержания в асфальтобетонной смеси коксового порошка менее 8% приводит к ухудшению качества по показателям: предела прочности и сцепления с битумом. Увеличение количества коксового порошка выше 8% от общей массы ведет к снижению таких показателей, как водонасыщение и водостойкость.

Заявитель поясняет, что измельчение следует проводить при температурах 30-70 °C, оптимально 50 °C, поскольку измельчение при температуре ниже 30 °C связано с техническими трудностями подачи коксовой мелочи в измельчительные устройства, а выше 70 °C может привести при выбросе коксовой пыли к созданию взрывоопасной среды.

Как видно из Таблицы 3, все показатели коксового порошка удовлетворяют требованиям ГОСТ 9128-2013* «Смеси асфальтобетонные, полимерасфальтобетонные, асфальтобетон, полимерасфальтобетон для автомобильных дорог и аэродромов».

Основываясь на приведенных выше экспериментальных данных, можно сделать заключение о том, что заявленное техническое решение обеспечивает лучшие физико-механические характеристики при содержании коксового порошка в асфальтобетонной смеси 8% от общей массы, при котором размеры частиц находятся в интервале от 1 до 5 мкм. Полученные показатели характеризуют повышение основных характеристик асфальтобетонной смеси при использовании коксового порошка по сравнению с аналогом. Таким образом, преимуществами заявленного технического решения являются:

• Существенное улучшение физико-механических показателей - значения пределов прочности при 20 °С улучшились с 4,3 до 4,6, а при 50 °С – с 1,5 до 1,7.

• Улучшение показателя водонасыщения - при использовании коксового порошка показатель водонасыщения составил 1,5, что значительно превосходит показатель по аналогу, равный 3,6.

Таким образом, из описанного выше можно сделать вывод, что заявителем достигнуты поставленные цели и заявленный технический результат, а именно - получен новый высокоэффективный вид порошка для асфальтобетонных смесей на основе товарного нефтяного кокса и его нецелевых фракций, обладающий повышенной водостойкостью, адсорбционной активностью и низкой себестоимостью, которые могут более эффективно заменить известные минеральные порошки.

Коксовый порошок с размерами частиц (дисперсностью) 1–5 микрометров (мкм) возможно добавлять в асфальтобетонные смеси дорожных покрытий, что обеспечивает повышенные эксплуатационные свойства дорожного покрытия – водостойкость, износостойкость, адсорбционную активность и низкую себестоимость, а также можно более эффективно заменять известные минеральные порошки.

Заявленное техническое решение соответствует критерию «новизна», предъявляемому к изобретениям, так как при определении уровня техники не выявлено техническое решение, которому присущи признаки, идентичные (то есть совпадающие по исполняемой ими функции и форме выполнения этих признаков) совокупности признаков, перечисленных в формуле изобретения, включая характеристику назначения.

Заявленное техническое решение соответствует критерию «изобретательский уровень», предъявляемому к изобретениям, поскольку не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками заявленного изобретения, и не установлена известность влияния отличительных признаков на указанный технический результат.

Заявленное техническое решение соответствует критерию «промышленная применимость», предъявляемому к изобретениям, так как может быть изготовлено с использованием известных материалов, комплектующих изделий, стандартных технических устройств и оборудования.

Формула изобретения

Нефтяной кокс для асфальтобетонной смеси, отличающийся тем, что состоит из коксового порошка с размерами частиц 1–5 мкм, механоактивированного при температуре 30-70 °С.

Изобретение " Нефтяной кокс для асфальтобетонной смеси" (Кемалов Алим Фейзрахманович, Брызгалов Николай Иннокентьевич, Кемалов Руслан Алимович, Суворов Алексей Анатольевич, Хабиров Спартак Галимзянович, Риффель Данил Владимирович, Валиев Динар Зиннурович, Абдрафикова Ильмира Маратовна) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля