L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА


НазваниеСПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА
Разработчик (Авторы)Терещук Валерий Сергеевич, Стаценко Иван Николаевич, Гармашов Александр Борисович
Вид объекта патентного праваИзобретение
Регистрационный номер 2602905
Дата регистрации25.03.2015
ПравообладательФедеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН), Федеральное государственное бюджетное научное учреждение"Институт природно-технических систем" РАН
Область применения (класс МПК)C01B 3/08 (2006.01)

Описание изобретения

Изобретение относится к способу получения водорода для различных потребностей народного хозяйства. Способ заключается в том, что сплав на основе алюминия, содержащий алюминий 92-98%, медь 1-8%, помещают в водный раствор щелочи, содержащий щелочь 0,4%, вода - остальное, и осуществляют химическую реакцию при температуре раствора 15-70°C, при этом в реакции используют воду с pH от 7 до 12. Изобретение обеспечивает повышение скорости выделения водорода, удешевление производства и безопасность процесса. 1 ил., 1 табл.

 

Изобретение относится к способам получения водорода для различных потребностей народного хозяйства, в том числе в установках для получения водорода транспортных средств.

Известен способ получения водорода с помощью алюминия из концентрированного раствора щелочей в воде: 2Al+2NaOH+6H2O=2Na[Al(OH)4]+3Н2 (Р.А. Лидин, Химия, справочник, изд-во «Астрель», Москва, 2011, стр. 60). В этом источнике информации подробно описана химическая реакция, которая проводится при растворении в 108 г воды 80 г щелочи, т.е. 2 моля щелочи на 6 молей воды. В литре (1000 г) воды содержится 55,55 молей воды, т.е. в литре воды надо будет растворить 18,5 молей щелочи или 740 грамм. Существенным недостатком такого способа является высокий концентрат щелочи, что, разумеется, небезопасно в обращении и использовании его в какой-либо установке.

Известен способ получения водорода на основе гидрореагирующих композиций, содержащих алюминий и активизирующие группы металлов, в том числе галлий, индий, олово, цинк (Патент РФ №2394753, МПК C01B 3/08, 2009 г.). К недостаткам этого способа относится использование, или чистого алюминия, или дорогостоящих сплавов, например, с индием, галлием или с другими редкими металлами. Чистый алюминий весьма медленно реагирует из-за образования прочной окисной пленки, и чтобы ускорить химическую реакцию, прибегают к порошкам и даже нанопорошкам алюминия, чтобы увеличить реакционную поверхность, что существенным образом усложняет технологию получения водорода.

В предлагаемом техническом решении задачи получения водорода на основе химической реакции алюминиевого сплава в щелочном растворе использован сплав алюминия и меди в качестве химического реагента с безопасным раствором щелочи. В основу решения поставленной задачи положена теоретическая предпосылка, что при взаимодействии алюминия с различными средами его коррозия и выделение водорода необязательно зависят от дорогостоящих добавок, какие были использованы в прототипе. С этой целью может быть использован сплав, состоящий из алюминия и меди при соответствующем соотношении компонентов.

Предлагаемый способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора заключается в том, что сплав на основе алюминия с содержанием алюминия 92-98%, меди 1-8% помещают в водный раствор щелочи с содержанием 0,4% щелочи и осуществляют химическую реакцию при температуре раствора 15-70°С, при этом в реакции используют воду с рН от 7 до 12.

Получение технического результата, выбор состава сплава алюминия и меди, а также определение условий проведения реакции осуществлялось экспериментальным путем проведения испытаний сплавов с разным процентным содержанием компонентов.

На фиг. 1 представлена схема установки, на которой проводились эксперименты.

В лабораторных условиях проводились испытания со сплавами, состав которых представлен в таблице 1.

Как показали эксперименты, чем больше содержание меди в сплаве, тем выше скорость выделения водорода. Но, с другой стороны, сама медь при реакции со щелочью не выделяет водород, поэтому, чем больше ее в сплаве, тем меньше удельная газопроизводительность с 1 кг сплава. Так если с 1 кг Al получаем 1244 л водорода, то соответственно с 1 кг сплава, где, например, 8% меди, на столько же уменьшится удельная газопроизводительность и составит 1144 л. На эксперименте получено с 1 г такого сплава 1100 мл водорода или в пересчете на 1 кг - 1100 л водорода, т.е. полнота реакции составляет 96%.

Кроме того, для удаления окисной пленки исследованные сплавы не нуждаются в концентрированном растворе NaOH, а всего 2-4 г/л - это еще удешевляет производство водорода и делает безопасным эксплуатацию такого раствора. При такой концентрации NaOH скорость реакции для получения водорода будет зависеть в основном от количества меди в сплаве.

Чтобы не зависеть на испытаниях от состава воды, специально на каждый опыт приготовлялся свежий раствор 0,1 H NaOH в дистиллированной воде. Первые испытания для сравнения с предлагаемым сплавом были проведены на чистом Al марки АД00 (стружка), на гранулированном Al ЧДА (изготовление август 2000 г. - гарантийный срок хранения 3 года - хранился в негерметичном полиэтиленовом пакете при комнатных условиях), Al листовой электротехнический (изготовление июнь 1988 г.) толщиной 0,5 мм. Наиболее интенсивное газовыделение наблюдалось на последнем образце, и выделение водорода началось сразу же. Чуть похуже реакция шла со стружкой. Гранулы Al в среднем имели толщину 3,5 мм и диаметр 12 мм. Выделение водорода началось только через 19 минут, и скорость выделения была незначительна по сравнению с предыдущими образцами.

Задача в данной серии экспериментов состояла в получении и испытании алюминиевых сплавов, которые корродировали бы с наибольшим эффектом с выделением водорода. Для этого были изготовлены сплавы на основе Al с добавками меди, магния, цинка и железа, увеличивающими коррозию Al и исключающими стабилизирующие добавки Mn, Ti, Ni, содержащиеся в Д16. Составы заказанных сплавов по последовательности их изготовления и испытания (см. их нумерацию) приведены в табл. 1. Для сравнения на растворе такой же концентрации был испытан сплав Д16.

Для полноты исследования был проведен эксперимент, где на сплаве с 4% меди концентрация щелочи в растворе была уменьшена в 2 раза. Интересен также опыт, где процент меди в сплаве был уменьшен до 1% (концентрация раствора как и на большинстве испытаний 0,1H NaOH).

В начале и в конце каждого испытания образец сплава взвешивался и по разности массы находилось теоретическое значение объема водорода и сравнивалось с тем, которое получалось в эксперименте. После каждого испытания образец тщательно высушивался.

На всех экспериментах полнота выделения водорода была близка к 100%, за исключением Д16, где она составила 87%. Анализируя результаты экспериментов, можно заметить, что полученные зависимости четко разделяются на две группы: группа сплавов Al-Cu с повышенной газопроизводительностью от 4,6 л/м2·мин (сплав №8) до 0,9 л/м2·мин (сплав №2) и группа чистого Al от 0,02 л/м2·мин (пластины электротехнического А10) до 0,01 л/м2·мин (гранулированный Al), т.е. наблюдаемая разница на два порядка при одной и той же температуре (15-20°С).

Как показали испытания, уменьшение содержания меди в сплаве с 4% до 1% примерно во столько же раз снижает газопроизводительность. Дополнительно был проведен опыт с содержанием меди в сплаве с Al 8%, что привело к увеличению скорости газовыделения по сравнению с 4% меди в сплаве еще в 2 раза.

Уменьшение концентрации раствора щелочи в два раза приводит к тройному уменьшению газопроизводительности, т.е. на одном и том же составе можно в широких пределах регулировать величину газопроизводительности за счет концентрации раствора щелочи.

Безопасную концентрацию щелочи можно довести до 1%.

В процессе этой серии экспериментов пассивации образцов не было выявлено. Особенностью экспериментов является идеальное изготовление заказанных сплавов, когда стружка корродировала настолько равномерно, что оставалась гладкой и после опыта никаких следов язвенной, питтинговой, растрескивающейся коррозии не было обнаружено.

На отдельных испытаниях проводился нагрев щелочного раствора до 50°С. При этом скорость реакции возрастала в 2 раза.

Схема установки, на которой проведена данная серия испытаний, приведена на фиг. 1.

Способ получения водорода состоит в помещении испытуемого образца 4 в реакционную колбу 7, в которую наливается реакционный раствор 6. Колба устанавливается на регулируемую электроплитку 5, и замер температуры раствора осуществляется термопарой 8. Из реакционной колбы по боковому ее отводу водород по стеклянной или резиновой трубке 3 отводится в мерный цилиндр 2, помещенный в ресивер с водой 1. Замер осуществляется методом вытеснения воды из мерного цилиндра. Технические результаты испытаний представлены в Приложении 1.

По результатам проведенных экспериментов можно сделать вывод, что для достижения поставленной задачи получения водорода необязательно использовать многокомпонентные сплавы, а ограничиться простейшим двухкомпонентным сплавом алюминия с небольшой добавкой меди, при этом используя слабощелочной раствор.

Приложение 1.

Результаты испытаний алюминиевых сплавов

В табличном варианте даны результаты испытаний, которые наиболее продуктивны и вошли в формулу изобретения:

Стружка из сплава Al марки АДО с 4% Cu марки M1, толщина стружки 0,4 мм, вес = 7,176 г. Раствор тот же. Температура раствора = 16°C. Sпов=128,14 см2.

Результаты в виде зависимости газопроизводительности от времени приведены на рис 1.

Полнота выделения водорода близка к 100%.

Реакция идет сразу и очень бурно и температура в конце опыта повышается с 15°С до 17°С. Такая скорость реакции, на наш взгляд, обуславливается образованием множества микрогальванопар, усиливающих коррозию, т.е. растворение Al.

В следующем опыте при той же концентрации раствора 0,1Н NaOH был испытан сплав Al с добавкой 1% меди. Температура раствора приведена в таблице. Раствор вначале искусственно подогревался, чтобы идентифицировать с предыдущим опытом.

Начальный вес стружки = 8,204 г. Толщина стружки = 0,45 мм.

Поверхность 130 см2.

Реакция пошла сразу.

Результаты в виде зависимости газопроизводительности от времени - на рис. 1.

Вес стружки данного сплава после испытания составляет 7,834 г, т.е. прореагировало 0,37 г из них чистого Al: 0,37×0,99=0,366 г. Поэтому теоретически должно выделиться 455 мл водорода. Экспериментальная величина с учетом погрешностей близка к теоретической. Из сравнения двух последних экспериментов при равенстве реакционных поверхностей четко прослеживается прямо пропорциональная зависимость скорости реакции от содержания меди в Al. Содержание меди уменьшили в 4 раза и во столько же раз изменилась скорость реакции.

Дополнительное испытание на газопроизводительность с добавкой в алюминиевый сплав 8% меди. Алюминиевая стружка весом 1 г, толщина стружки 0,025 см, поверхность 15,2 см2, раствор как и на предыдущих испытаниях NaOH 4 г/л, начальная температура раствора 15°С. Испытание длилось 2 часа. Приводится таблица на 34 мин.

В остальное время скорость газовыделения водорода 0,46 мл/см2мин.

Формула изобретения

Способ получения водорода на основе химической реакции алюминиевого сплава и щелочного раствора воды, отличающийся тем, что сплав на основе алюминия с содержанием алюминия 92-98%, меди 1-8% помещают в водный раствор щелочи, содержащий, %:

щелочь 0,4
вода остальное,


и осуществляют химическую реакцию при температуре раствора 15-70°C, при этом в реакции используют воду с pH от 7 до 12.

Изобретение "СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА" (Терещук Валерий Сергеевич, Стаценко Иван Николаевич, Гармашов Александр Борисович) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля