Название | СПОСОБ РЕГЕНЕРАЦИИ АЗОТА И ФОСФОРА ИЗ СТОЧНЫХ ВОД ОСАЖДЕНИЕМ ИХ ИОНОВ В ФОРМЕ СТРУВИТА |
---|---|
Разработчик (Авторы) | Кузнецова Юлия Вячеславовна, Вольхин Владимир Васильевич, Пермякова Ирина Александровна, Черных Ирина Андреевна, Леонтьева Галина Васильевна, Исмагзамова Лилия Ильгизовна |
Вид объекта патентного права | Изобретение |
Регистрационный номер | 2756807 |
Дата регистрации | 05.10.2021 |
Правообладатель | федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" |
Область применения (класс МПК) | C02F 1/58 (2006.01) C01B 25/45 (2006.01) C01F 5/00 (2006.01) C05B 17/00 (2006.01) C05C 3/00 (2006.01) C02F 101/10 (2006.01) C02F 101/16 (2006.01) |
Изобретение может быть использовано при очистке сточных вод. Способ регенерации азота и фосфора из сточных вод осаждением их ионов в форме струвита включает осаждение струвита при исходном молярном отношении [Mg2+]:[NH4+]:[РО43-], близком стехиометрическому составу струвита. При наличии в сточной воде ионов фтора проводят предподготовку воды путем добавления карбоната кальция, осаждения и отделения осадка фторида кальция. Недостающие для образования струвита ионы Mg2+ и РО43- вводят в сточную воду в виде промежуточного продукта, который получают смешением растворов. При этом смешивают раствор хлорида или сульфата магния в количестве, позволяющем получать в сточной воде молярное отношение Mg2+/NH4+ от 1,1 до 1,2, и раствор фосфатов натрия или калия, таких как Na3PO4 или K3PO4 и Na2HPO4 или K2HPO4, в количестве и соотношении, которые позволяют устанавливать в сточной воде рН в диапазоне от 8,0 до 9,5 и молярное отношение РО43-/NH4+ равное 1,0. Полученные растворы смешивают при 25-70°С и интенсивном перемешивании в течение 1-2 мин для приготовления промежуточного продукта, который непосредственно после приготовления вводят в сточную воду при ее перемешивании. Полученную суспензию перемешивают в течение 15-20 мин, отстаивают осадок в течение 20-30 мин, осветленную воду отделяют декантацией. Изобретение позволяет повысить степень извлечения ионов NH4+ и РО43- из сточных вод при одновременном осаждении ионов аммония и фосфата в форме струвита, не допуская появления в составе осажденного продукта примеси других фаз. 1 з.п. ф-лы, 1 ил., 9 табл., 5 пр.
Изобретение относится к химической технологи утилизации отходов на основе принципа рецикла азота и фосфора с получением гексагадрата магнийаммонийфосфата.
Регенерация азота и фосфора из сточных вод осаждением их ионов - NH4+ и PO43- в форме струвита (гексагидрата магнийаммонийфосфата, MgNH4PO4 6H2O), являющегося комплексным удобрением пролонгированного действия, позволяет возвращать регенерированные биогенные элементы в виде удобрения в природный круговорот веществ, а также способствовать решению проблемы предотвращения эвтрофикации природных водоемов за счет удаления азота и фосфора из промышленных и сельскохозяйственных стоков.
Известные способы решения задачи осаждения ионов NH4+ и PO43- из сточных вод в форме струвита представлены в следующих патентах.
Известен способ получения гранулированного карбамида, включающего в качестве модификатора магнийаммонийфосфата, полученного при очистке сточных вод от фосфат-ионов (см. патент РФ, RU №2 285 684 C1, С05С 9/00, B01j/2/28, 09.06.2005).
Недостатками известного способа является то, что он не предусматривает совместное извлечение ионов NH4+и PO43- из сточной воды и, допуская изменение содержания ингредиентов в составе осадка струвита в очень широких пределах (вес, %): MgO от 4,9 до 29,4; P2O5 от 8,7 до 51,7; NH3 от 2,1 до 12,4; H2O - остальное, он не дает рекомендаций по достижению высокого содержания питательных элементов в струвите как удобрении.
Известен способ получения фосфата из фосфорсодержащих сточных вод по технологии осаждения струвита (см. патент Китая, CN 102 690000 А, 11.05.2012). Предназначен для извлечения ионов РО43- из сточных вод при отсутствии в них ионов Mg2+и NH4+. Поэтому для осаждения струвита в сточную воду дополнительно вводится необходимое количество магния в виде MgCl2 и необходимое количество азота - в виде NH4Cl. В сточной воде устанавливается молярное соотношение Mg: N: Р, которое при разных вариантах осуществления способа составляет: 1,2:1,1:1; 1,5:1:1; 1:1,5:1; 1,3:1,2:1, и рН устанавливают на уровне 8,2. Лучшие результаты по снижению остаточной концентрации фосфора в сточной воде получены при введении в нее избытка как ионов Mg2+ так и ионов NH4+ по отношению к РО43-, участвующему в образовании струвита.
Недостатком известного способа является его применение только для регенерации фосфора из фосфорсодержащих сточных вод и необходимость для наиболее полного извлечения ионов РО43- обязательно вводить в сточную воду достаточно высокий избыток ионов NH4+, сточная вода после очистки сохраняет избыточные ионы NH4+, что нецелесообразно при решении задачи предотвращения эвтрофикации водоемов.
Известен способ переработки аммиачно-азотных сточных вод с получением струвита (см. патент Китая, CN 103 848540 А, 10.01.2014). Предназначен для извлечения ионов NH4+ из сточной воды, которая не содержит ионы Mg2+ и PO43-, эти ионы дополнительно вводят в сточную воду в количествах, необходимых для образования струвита. В одном из вариантов применения способа предусмотрено в качестве источников магния и фосфора использовать соответственно MgO и Н3РО4. В других вариантах - MgCl2 и Na2HPO4 или NaH2PO4. Мольные соотношения Mg : N : Р в сточной воде при осаждении струвита устанавливали равными 1:1:1; 1,2:1:1; 1,2:1:0,8 и 1,4:1:0,8, и рН в сточной воде поднимали с помощью NaOH от 7,4 (иногда ниже) до 8,5.
Результаты по степени извлечения ионов NH4+ из сточных вод самые низкие оказались в варианте с MgO и H3PO4 - только 70%. В других вариантах с использованием MgCl2 и Na2HPO4 или NaH2PO4, в порядке выше перечисленных соотношений Mg : N : Р, степень извлечения ионов NH4+ составила (%): 86, 89, 95-96 и 94. Самое высокое из них значение получено при отношении Mg : N : Р 1,2:1:0,8 и рН 9,2. Степень извлечения ионов NH4+ оказалась в сильно выраженной зависимости от исходной концентрации ионов аммония в сточной воде, что подтверждается следующими экспериментальными данными согласно известному патенту:
Соответственно, чем ниже содержание ионов NH4+, тем труднее и в меньшей степени происходит их выделение из сточной воды. Такой результат является существенным недостатком известного способа, так как большинство типов сточных вод имеют содержание ионов аммония ниже 500 мг/л. Известный способ не предусматривает одновременное извлечение ионов NH4+ и РО43- из сточных вод.
Известен способ получения композиции удобрений, обеспечивающей медленное (за счет струвита) и быстрое (за счет моноаммонийфосфата) высвобождение фосфора, а также и других необходимых для питания растений веществ и микроэлементов (см. патент США, US 2016/0130191 А1 05.12.2016). Получение композиции основывается на включении в ее состав струвита, образующегося при очистке сточных вод. За счет струвита композиция становится устойчивым источником фосфора на весь период вегетации растений, но по причине умеренной растворимости струвита предотвращается «обжигание» корней растений и сокращаются потери Mg, N и Р из почвы под действием дождей, поливов. Обнаружено также благоприятное влияние магния - повышение эффективности поглощения фосфора из почвы растениями.
Недостатком известного изобретения является ограниченность характеристики состава струвита, как продукта осаждения из сточных вод, представленной лишь ссылкой на его химическую формулу, и при этом не раскрываются условия, которые могут обеспечить образование в сточной воде струвита с составом, близким к его стехиометрии, и не приводятся остаточные концентрации ионов NH4+ и РО43- в сточной воде после осаждения струвита, и не показана степень их извлечения из сточной воды при осаждении струвита.
Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ регенерации азота и фосфора в форме струвита из сточной воды производства полупроводников (см. публикацию: Warmadewanthi, J.С. Liu. Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and purification technology, - 2009, vol. 64, p. 368-373). Известный и предлагаемый способы предназначаются для одновременного извлечения ионов NH4+ и РО43- из сточных вод путем осаждения их в форме струвита, который является комплексным удобрением пролонгированного действия, и его последующее использование по назначению позволяет осуществить рецикл азота и фосфора и внести вклад в экономию энергетических и минеральных ресурсов. К тому же, удаление биогенных элементов (N и Р) из сточных вод способствует предотвращению эвтрофикации водоемов. Исходя из одного и того же назначения известный способ выбран в качестве прототипа.
Основные недостатки известного способа, принятого за прототип, сводятся к следующему. В известном способе не удалось решить задачу выбора условий, обеспечивающих достаточно полное извлечение ионов NH4+ и РО43- из сточной воды при их одновременном осаждении в форме струвита. Так, эффективность извлечения ионов РО43- возрастает в последовательности повышения рН: 48,7% при рН 8, 84,2% при рН 9 и 93,2% при рН 10. Однако повышение рН, по крайней мере выше 8, приводит к снижению степени извлечения ионов NH4+ из сточной воды. Например, при рН 9 степень извлечении ионов NH4+ составляет лишь 33,5%.
Другой недостаток. При осаждении струвита желательно иметь молярное соотношение [Mg2+] : [NH4+] : [РО43-] в сточной воде, близким стехиометрическому в составе струвита. Но такое соотношение ионов при использовании способа согласно прототипу оказалось малоэффективным, что потребовало введения в сточную воду достаточно большого избытка ионов Mg2+ и/или NH4+ против содержания в виде ионов РО43-. Так, при отношениях [Mg2+] : [РО43-], равных 1:1 и 2:1, степень извлечения ионов NH4+ из сточной воды достигла лишь 1,9% и 40% соответственно. Показано, что увеличение отношений [NH4+] : [PO43-] в сточной воде от 4,8:1 до 15:1 повышает степень извлечения ионов PO43- до 92,5%. Поскольку избыток в сточной воде любого иона, входящего в состав струвита, делает неизбежным его накопление в форме остаточной концентрации после осаждения струвита, такой путь повышения эффективности извлечения ионов РО43- или NH4+ представляется нецелесообразным с позиции экологии и экономики.
Признаки прототипа, совпадающие с признаками заявленного решения:
• осаждение струвита проводят непосредственно в сточной воде;
• при этом решается задача приблизить отношение [Mg2+] : [NH4+] : [РО43-] в сточной воде к 1:1:1, которое соответствует стехиометрии этих ионов в составе струвита;
• поддержание оптимального для осаждения струвита интервала рН от 8,0 до 9,5;
• выполнение осаждения струвита путем введения в сточную воду дополнительно ионов тех элементов, содержание которых недостаточно для образования гексагидрата магнийаммонийфосфата;
• в случае необходимости проводят предподготовку сточной воды с учетом особенностей ее состава.
Задача заявленного способа - повысить степень извлечения ионов NH4+ и РО43- из сточных вод при одновременном осаждении ионов аммония и фосфата в форме струвита, включая использование способа при осаждении струвита из сточных вод с разной концентрацией ионов NH4+, в том числе, относительно низких, и при установлении в сточной воде молярного отношения [Mg2+] : [NH4+] : [РО43-], близкого к стехиометрическому в составе струвита, то есть не прибегая при осаждении струвита к значительным избыткам относительно друг к другу ионов элементов, входящих в его состав, обеспечить при этом наиболее полное насыщение струвита ионами NH4+, не допуская появления в составе осажденного продукта примеси других фаз кроме струвита.
Поставленная задача была решена за счет того, что в известном способе регенерации азота и фосфора из сточных вод осаждением их ионов в форме струвита, включающем осаждение струвита непосредственно в сточной воде при исходном молярном отношении [Mg2+] : [NH4+] : [РО43-], близким стехиометрическому составу струвита, при рН сточной воды в диапазоне от 8,0 до 9,5, путем введения в сточную воду дополнительных ионов тех элементов, содержание которых недостаточно для образования струвита, в случае необходимости проводят предподготовку сточной воды с учетом особенностей ее состава, согласно изобретению недостающие для образования струвита ионы Mg2+ и РО43- вводят в сточную воду в виде промежуточного продукта, который получают смешением высококонцентрированных растворов, а именно раствора соли магния, используя растворимую соль магния, например, хлорид или сульфат в количестве, позволяющем получать в сточной воде молярное отношение Mg2+/NH4+ от 1,1 до 1,2, и раствора фосфатов натрия или калия, включая Na3PO4 или K3PO4 и Na2HPO4 или K2HPO4 в таком количестве и соотношении, которые позволяют устанавливать в сточной воде рН в диапазоне, рекомендованном для осаждения струвита, и молярное отношение РО43-/NH4+ близкое 1,0, растворы солей смешивают и используют для получения промежуточного продукта при температуре от 25 до 70°С, общее содержание солей в расчете на массу безводных солей и воды в расчете на массу добавленной воды и воды кристаллогидратов при приготовлении промежуточного продукта характеризуется массовым отношением соли : вода в интервале от 1:3,2 до 1:8,7, полученные растворы смешивают при интенсивном перемешивании в течение 1-2 мин для приготовления промежуточного продукта и полученный промежуточный продукт, и непосредственно после приготовления вводят в сточную воду при ее перемешивании, что вызывает образование струвита, полученную суспензию перемешивают в течение 15-20 мин, отстаивают осадок в течение 20-30 мин и осветленную воду отделяют от осадка декантацией.
В качестве растворов фосфатов натрия или калия используют раствор продуктов нейтрализации фосфорной кислоты, который получают в ходе приготовления промежуточного продукта, используя для нейтрализации в количестве до 3 моль NaOH или KOH на 1 моль H3PO4, или используя 1 моль Na2CO3 или K2CO3 на 1 моль H3PO4 и до 1 моль NaOH или KOH на 1 моль H3PO4, нейтрализацию проводят при 45 - 70°С в течение 60 мин.
Признаки предлагаемого способа, отличительные от прототипа: использование для осаждения струвита в сточной воде промежуточного продукта, включающего недостающие для осаждения струвита ионы Mg2+и РО43-, который получают смешением в определенных соотношениях высококонцентрированных растворов солей и воды, а именно: раствора соли магния, используя растворимую соль магния, например, хлорид или сульфат, и раствора фосфатов натрия или калия, или фосфорной кислоты, нейтрализованной гидроксидом натрия или последовательно карбонатом натрия и далее - гидроксидом натрия. Для нейтрализации фосфорной кислоты возможно использование калиевых аналогов - K2CO3 и KOH, если это требуется для получения комплексного удобрения на основе струвита.
При получении промежуточного продукта необходимо соблюдать ограничения по количеству используемой воды. Поэтому высококонцентрированные растворы солей магния и фосфата получают при температурах 25-70°С и отношении по массе между солями (в расчете на безводные соли) и водой (в расчете на воду кристаллогидратов и добавленную воду), которое допустимо в пределах от 1: 3,2 до 1: 8,7. Увеличение температуры выше 25(способствует лучшей растворимости солей при меньших допустимых значениях доли воды в смеси. Но количество воды меньшее, чем рекомендовано в этом диапазоне,, ограничивает возможность растворения солей, и поэтому не рекомендуется, но верхний предел по количеству воды ограничен более строго, так как избыток воды приводит к понижению активности промежуточного продукта при осаждении струвита. Полученные растворы смешивают при интенсивном перемешивании (при скорости вращения мешалки до 600 об/мин) в течение 1-2 мин, смесь приобретает некоторую вязкость, и полученный продукт после смешения готов для введения в сточную воду. Его вводят в сточную воду для осаждения струвита непосредственно после приготовления.
Согласно заявленному способу предусмотрена возможность замены при получении промежуточного продукта источников ионов Mg2+ и ионов РО43- на более дешевые и доступные реагенты, а именно: реактива MgCl2⋅6H2O на природный минерал бишофит, основным компонентом которого является гексагидрат хлорида магния, но возможны примеси и отклонения по составу кристаллизационной воды, и солей Na3PO4⋅12H2O и Na2HPO4⋅12H2O экстракционной 68%-ной фосфорной кислотой, нейтрализованной с помощью Na2CO3 и NaOH с образованием солей Na3PO4⋅12H2O и Na2HPO4⋅12H2O в заданном соотношении. При необходимости нейтрализацию Н3РО4 можно проводить с помощью K2CO3 и KOH.
Как показали примеры осуществления заявляемого способа, замена реактива MgCl2⋅6H2O бишофитом практически не влияет на его эффективность как источника ионов Mg2+ при осаждении струвита из сточной воды при условии контроля фактического содержания в этом материале ионов Mg2+.
Подтвердилась также возможность замены готовых фосфатов натрия на продукты нейтрализации Н3РО4. Использованы два варианта нейтрализации фосфорной кислоты: в первом для нейтрализации 1 моль Н3РО4 расходовали до 3 моль NaOH, и, во втором, нейтрализацию проводили в две стадии - на первой расходовали 1 моль Na2CO3 и на второй - использовали дополнительно до 1 моль NaOH, при нейтрализации поддерживали температуру 45-70°С, общая продолжительность операции до 60 минут при умеренном перемешивании смесей. В большинстве случаев в качестве продукта необходима смесь солей Na3PO4 и Na2HPO4 и поэтому не требуется проводить полную нейтрализацию Н3РО4. Уместно отметить, что согласно предлагаемому способу полученные при нейтрализации фосфаты натрия нет необходимости выделять в индивидуальном виде - они так и остаются в промежуточном продукте.
Используемые для приготовления промежуточного продукта компоненты, значения массовых отношений солей и воды в составе промежуточного продукта и результаты выделения ионов NH4+ из сточной воды при использовании полученных образцов промежуточного продукта в расчете на 1 л сточной воды представлены в таблице 1.
Полученные данные подтверждают, что нижний предел по содержанию воды в промежуточном продукте строго не ограничен и определяется лишь способностью солей растворяться, и возможностью снижения излишней вязкости полученного продукта, однако превышение верхнего предела по содержанию воды, соответствующего массовому отношению безводные соли : вода, равному 1:8,7, приводит к снижению активности промежуточного продукта при осаждении ионов NH4+ из сточной воды в форме струвита.
Проведена проверка также результатов выделения ионов NH4+ из сточной воды при использовании двух вариантов нейтрализации фосфорной кислоты: в первом, для нейтрализации 1 моль Н3РО4 использовали до 3 моль NaOH, и, во втором, нейтрализацию Н3РО4 осуществляли в две стадии - использовали Na2CO3 в количестве 1 моль Н3РО4 на первой стадии и до 1 моль NaOH на второй, при нейтрализации поддерживали температуру 45-70°С, продолжительность операции до 60 минут при умеренном перемешивании. Расход NaOH на нейтрализацию и, следовательно, требуемая степень нейтрализации Н3РО4 зависит от рН сточной воды.
При разработке способа с использованием двух вариантов нейтрализации Н3РО4 проверялось также, как может отразиться на результаты процесса очистки сточной воды значение исходной концентрации в ней ионов NH4+, которое приняли равным 180 мг/л в первом варианте и 540 мг/л во втором. Соответственно использовали разные количества MgCl2⋅6H2O в расчете на 1 л воды: 2,003 г и 6,090 г, при этом в обоих вариантах при осаждении струвита в сточной воде получили соотношение [Mg2+] : [NH4+] : [РО43-], близкое 1:1:1. Полученные данные, отнесенные к обработке 1 л сточной воды, представлены в таблице 2.
Полученные результаты подтверждают возможность использования Н3РО4 как источника ионов фосфата при получении промежуточного продукта и возможность проведения операции ее нейтрализации в двух вариантах без изменений других условий приготовления промежуточного продукта.
При получении промежуточного продукта предусматривается также выбор соотношения между кислотными и щелочными компонентами. Поддержание необходимого уровня рН для осаждения струвита достигается за счет регулирования соотношения компонентов в промежуточном продукте между фосфатами и гидрофосфатами, например, между Na3PO4 (0,5 М раствор имеет рН ~ 12,1) и Na2HPO4 (0,5 М раствор имеет рН ~ 8,9). При нейтрализации Н3РО4 нужного результата можно достигнуть, используя разное количество NaOH или KOH на заключительной стадии нейтрализации фосфорной кислоты, так как это позволяет устанавливать разное соотношение между фосфатом и гидрофосфатом в продуктах нейтрализации, что необходимо для регулирования значения рН в сточной воде.
На основе экспериментальных данных установлено, что для очистки типичных сточных вод, характеризующихся нейтральными и слабощелочными значениями рН в диапазоне 6-8, соотношение между фосфатами и гидрофосфатами в промежуточном продукте целесообразно устанавливать на уровне 80%\20%. В случае кислых вод, характеризующихся значениями рН 4-6, долю гидрофосфатов в составе промежуточного продукта рекомендуется понизить до 10%.
Установлено также, что при разных исходных концентрациях ионов NH4+ в сточной воде, включая относительно высокую (540 мг/л) и низкую (180 мг/л), и соответственно разных количеств необходимого для осаждения струвита промежуточного продукта, не повлияло на степень извлечения ионов NH4+ из сточной воды, она составила 96,7-96,8%.
Согласно известному способу переработки аммиачно-азотных сточных вод с получением струвита (см. патент Китая, CN 103848540 А, 10.01.2014) эффективность извлечения из них ионов NH4+ существенно зависит от исходных концентраций извлекаемых ионов в воде, поэтому данная зависимость была более детально исследована в условиях, когда аналогичная задача решается с помощью заявленного способа. В серии опытов все условия приготовления промежуточного продукта и осаждения струвита из сточной воды оставлены без изменения. Различия касаются содержания ионов аммония в сточной воде и соответственно количеств промежуточного продукта, и количеств реагентов для его приготовления. Полученные экспериментальные данные, отнесенные к 1 л сточной воды, представлены в таблице 3.
Полученные результаты подтверждают, что использование заявляемого способа позволяет извлекать ионы NH4+ из модельных сточных вод при варьировании в них исходных концентрации [NH4+] от 180 до 2320 мг/л, и при этом степень извлечения ионов аммония сохраняется в диапазоне от 95,6 до 98,5%. Установлено также, что при получении промежуточного продукта, потребность в минимальном количестве воды, выраженном через массовое отношение соли: вода, может минимизироваться при увеличении масштабов производства.
Как показывает анализ результатов использования известных способов извлечения ионов РО43- из сточных вод при их осаждении в форме струвита, степень извлечения фосфат-ионов существенно зависит от избытка ионов Mg2+ в сточной воде против стехометрического соотношения Mg/PO4, равного ионов РО43-, и одновременно ионов NH4+, из сточной воды в зависимости от исходного молярного соотношения ионов [Mg2+] : [NH4+] : [PO43-] в воде при осаждении струвита по заявленному способу была определена в диапазоне этих соотношений от 0,933:1:1 до 1,5:1:1. Эксперименты проведены на базе модели сточной воды, соответствующей по составу сточной воде, перерабатываемой по способу согласно прототипу. При извлечении ионов NH4+ и РО43- из воды все операции проводили согласно заявленному способу и при этом контролировали остаточные концентрации ионов аммония и фосфатов в сточной воде после осаждения струвита, степени извлечения этих ионов из сточной воды, а также рН сточной воды в конце процесса осаждения. Полученные результаты представлены в таблице 4.
Судя по результатам, полученным при использовании способа извлечения ионов NH4+ и РО43- из сточной воды при осаждении струвита, даже небольшой недостаток ионов Mg2+ против стехиометрического соотношения в составе струвита (0,933:1:1) заметным образом снижает степень извлечения ионов [РО43-] (до 86,2%) при соотношении, соответствующему стехиометрическому в составе струвита (1:1:1), степень извлечения [РО43-] повышается до 95,0%. Избыток ионов Mg2+ (1,1:1:1) приводит к некоторому дополнительному росту степени извлечения ионов [РО43-] - до 96,5%, при этом остаточная концентрация ионов [РО43-] в сточной воде после осаждения струвита понижается с 7,46 до 6,39 мг/л. Дальнейшее увеличение избытка ионов Mg2+ (1,2:1:1) повышает степень извлечения ионов [PO43-] до 97,2% и приводит к снижению остаточной концентрации ионов [РО43-] до 5,75 мг/л. Одновременно показано, что избыток ионов Mg2+ при осаждении струвита приводит к некоторому повышению степени извлечения также ионов NH4+ из сточной воды.
Таким образом, при извлечении ионов NH4+ и РО43- можно рекомендовать использовать положительный эффект избытка ионов Mg2+ в сточной воде при осаждении струвита, но заявленный способ позволяет ограничиться соотношением 1,1:1:1 и лишь при очень высоких требованиях к понижению остаточной концентрации ионов NH4+ и РО43- в сточной воде можно использовать соотношение вплоть до 1,2:1:1. Из практики работы с разными препаратами магния следует, что за счет их гигроскопичности всегда остается опасность получить недостаток ионов Mg2+ при осаждении струвита и поэтому приходится прибегать к небольшому избытку магния, чтобы избежать риска снижения эффекта очистки сточной воды.
Далее приведены примеры, показывающие эффективность извлечения ионов NH4+ и РО43- из моделей сточных вод при осаждении струвита с использованием заявленного способа. Представлены результаты очистки сточной воды не только аналогичной использованной в прототипе, но и примеры очистки сточных вод других типов, различающихся по составу.
Формула изобретения
1. Способ регенерации азота и фосфора из сточных вод осаждением их ионов в форме струвита, включающий осаждение струвита непосредственно в сточной воде при исходном молярном отношении [Mg2+]:[NH4+]:[РО43-], близком стехиометрическому составу струвита, при рН сточной воды в диапазоне от 8,0 до 9,5, путем введения в сточную воду дополнительных ионов тех элементов, содержание которых недостаточно для образования струвита, при наличии в сточной воде ионов фтора проведение предподготовки воды путем добавления карбоната кальция, осаждения и отделения осадка фторида кальция, отличающийся тем, что недостающие для образования струвита ионы Mg2+ и РО43- вводят в сточную воду в виде промежуточного продукта, который получают смешением растворов, а именно раствора соли магния, используя растворимую соль магния хлорид или сульфат, в количестве, позволяющем получать в сточной воде молярное отношение Mg2+/NH4+ от 1,1 до 1,2, и раствора фосфатов натрия или калия, включая Na3PO4 или K3PO4 и Na2HPO4 или K2HPO4, в таком количестве и соотношении, которые позволяют устанавливать в сточной воде рН в указанном выше диапазоне, необходимом для осаждения струвита, и молярное отношение РО43-/NH4+ равное 1,0, растворы солей смешивают и используют для получения промежуточного продукта при температуре от 25 до 70°С, общее содержание солей в расчете на массу безводных солей и воды в расчете на массу добавленной воды и воды кристаллогидратов при приготовлении промежуточного продукта характеризуется массовым отношением соли:вода в интервале от 1:3,2 до 1:8,7, полученные растворы смешивают при интенсивном перемешивании в течение 1-2 мин для приготовления промежуточного продукта и полученный промежуточный продукт непосредственно после приготовления вводят в сточную воду при ее перемешивании, что вызывает образование струвита, полученную суспензию перемешивают в течение 15-20 мин, отстаивают осадок в течение 20-30 мин и осветленную воду отделяют от осадка декантацией.
2. Способ по п. 1, отличающийся тем, что в качестве растворов фосфатов натрия или калия используют раствор продуктов нейтрализации фосфорной кислоты, который получают в ходе приготовления промежуточного продукта, используя для нейтрализации NaOH или KOH в количестве до 3 моль на 1 моль Н3РО4 или используя 1 моль Na2CO3 или K2CO3 на 1 моль Н3РО4 и до 1 моль NaOH или KOH на 1 моль Н3РО4, нейтрализацию проводят при 45-70°С при продолжительности до 60 мин.