L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

СПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ТИТАНА МАРКИ ВТ1-0


НазваниеСПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ТИТАНА МАРКИ ВТ1-0
Разработчик (Авторы)Камышанченко Николай Васильевич, Никулин Иван Сергеевич, Кунгурцев Максим Сергеевич, Кунгурцев Егор Сергеевич, Дурыхин Михаил Иванович, Неклюдов Иван Матвеевич
Вид объекта патентного праваИзобретение
Регистрационный номер 2491366
Дата регистрации10.05.2012
ПравообладательФедеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Область применения (класс МПК)C22F 1/18 (2006.01)

Описание изобретения

Изобретение относится к металлургии, а именно к обработке изделий из титана, и может быть применено в машиностроении, авиастроении. Задача изобретения - для увеличения прочности титана марки ВТ 1-0 в сочетании с повышением пластичности при обработке изделий из титана ВТ 1-0. Способ включает нагрев, который проводят до температуры, превышающей температуру полиморфного превращения. Выдержку осуществляют при температуре нагрева в течение 10-15 минут, а охлаждение ведут в хладагенте со скоростью 300°C/с, после чего осуществляют старение под нагрузкой при температуре 18-25°C, напряжении, не превышающем предела текучести при температуре старения, и времени, необходимом для выхода на устойчивую скорость релаксационного процесса. 1 табл., 1 пр.

 

Изобретение относится к цветной металлургии, а именно к термическим методам обработки, и может быть применено в машиностроении, авиастроении и др.

Известен способ упрочнения металлов и сплавов, включающий увеличение плотности дислокации путем пластической деформации металлов и сплавов, что способствует повышению предела прочности, но приводит к снижению пластичности [Гуляев А.П. Металловедение. Учебник для вузов, 6-е изд. М.: Металлургия, 1986, с.76-79]. Последующий отпуск приводит к уменьшению прочности на 20-30% с одновременным повышением пластичности. Эффект от применения данного способа происходит при плотности дислокации не ниже 1012 см-2, для чего требуются большие деформации металла. Существенным недостатком указанного способа упрочнения является то, что повышение прочности, основанное на увеличении плотности дислокации и уменьшении их подвижности, сопровождается снижением пластичности, вязкости и тем самым надежности. Отпуск приводит к повышению пластичности, но при этом значительно снижается прочность.

Известен способ термической обработки титана ВТ 1-0, заключающийся в нагреве со скоростью 60-80°C/мин до температуры на 260-280°C ниже температуры полиморфного превращения, выдержки при температуре 15-30 мин и охлаждении со скоростью 70-80°C/мин до 20°C опубликован в литературном источнике [Хорев А.И. Современные методы повышения конструкционной прочности титановых сплавов. - М.: Воениздат, 1979, 256 с.]. Этот способ приводит к значительному короблению конструкций, создает высокие термические напряжения в результате неоднородного нагрева по сечению, что усиливается охлаждением с высокой температуры и тем самым не обеспечивает необходимого уровня прочности и пластичности материала.

Наиболее близким по технической сущности к предлагаемому способу является способ термической обработки α-титановых сплавов, раскрытый в SU 979523 А [Авторское свидетельство СССР 979523 A, C22F 1/18, дата публикации 07.12.1982 г.]. Данный способ включает нагрев, выдержку и охлаждение, причем заготовку нагревают со скоростью 4-10°C/мин до температуры на 350-440°C ниже температуры полиморфного превращения, выдерживают при этой температуре 35-100 мин, охлаждают со скоростью 2-6°C/мин до температуры на 630-700°C ниже температуры превращения, а затем охлаждают со скоростью 30-50°C/мин до температуры 10-40°C. Этот способ термообработки пригоден для сплавов, имеющих повышенное содержание легирующих элементов, которые, закрепляясь в процессе перемещения на небольшие расстояния по разветвленной сетке субграниц, создают структуру с более высокой прочностью и хорошей пластичностью.

Недостаток выше описанного способа термической обработки заключается в том, что для технически чистых титановых сплавов, каким является титан марки ВТ 1-0, предложенный способ не обеспечивает повышения механических свойств из-за низкого содержания легирующих элементов и примесей.

Задачей настоящего изобретения является разработка способа обработки титана марки ВТ 1-0, т.е. увеличение прочности титана марки ВТ 1-0 в сочетании с повышенной пластичностью.

Техническим результатом изобретения является повышение прочности титана марки ВТ 1-0 в сочетании с повышенной пластичностью и тем самым повышения уровня механических свойств изделий из данного титана, в частности упругопластических параметров, термической и термомеханической устойчивости изделий.

Решение задачи обеспечивается предложенным способом обработки титана марки ВТ 1-0, включающим нагрев, выдержку и охлаждение. Причем нагрев проводят до температуры, превышающей температуру полиморфного превращения, выдержку осуществляют при температуре в течении 10-15 минут, охлаждение ведут в хладагенте со скоростью 300°C/с, после чего осуществляют старение под нагрузкой при температуре 18-25°C, напряжении, не превышающем предела текучести при температуре старения, и времени, необходимом для выхода на устойчивую скорость релаксационного процесса.

Способ осуществляется следующим образом.

Образец из титана марки ВТ 1-0 нагревают до температуры, превышающей температуру полиморфного превращения ~1000°C, выдерживают при данной температуре в течении 10-15 минут, проводят охлаждение - закалку в хладагенте со скоростью 300°C/c с последующим старением под нагрузкой при температуре 18-25°C, при напряжении 0,9 σ0,2, где σ0,2 - предел текучести - данное напряжение не превышает предела текучести при температуре старения. Продолжительность старения под нагрузкой соответствует времени выхода на устойчивую, т.е. постоянную скорость релаксационного процесса. Тепловое воздействие в указанном интервале температур приводит к увеличению диффузионной подвижности атомов и образованию в этих условиях повышенной концентрации точечных дефектов, т.е. происходит увеличение плотности дефектов. Быстрое охлаждение, т.е. закалка в воду со скоростью 300°C/с не только способствует обратному фазовому «β-α» переходу, но и фиксирует в структуре титанового сплава повышенную концентрацию дефектов [Кимура Г., Маддин Р. Влияние закаленных вакансий на механические свойства металлов и сплавов / В кн. «Дефекты в закаленных металлах» // Под ред. д.т.н. А.А.Цветаева. Перевод с англ. В.Н.Бобенко, И.В.Кирилова - М.: Атомиздат, 1969, с.188-270]. Последующий после закалки процесс старения при комнатной температуре под нагрузкой, не превышающей предела текучести σ0,2 при температуре старения, способствует упорядочению концентрационного распределения дефектов в сплаве, закреплению ими дислокации и тем самым обеспечивает улучшение прочности и повышение пластичности титана.

Пример.

Для изготовления образцов использовали лист из титана ВТ 1-0 толщиной 2 мм в состоянии поставки и отжигали в течение 1 часа при 700°C.

При этом механические свойства были следующие:

σв=278 МПа; δ=56%, где σв - статическая прочность, δ - пластичность.

На электроэрозионной установке «Sodick AQ 300 L» вырезали образцы виде лопаток с размерами рабочей части 2×2×12 м. Нагрев образцов осуществляли в муфельной печи до температуры 1000°C и выдерживали при данной температуре в течении 10-15 минут, после чего проводили закалку в воде при 20°C со скоростью 300°C/с.

Механические свойства заготовок после закалки:

σв=650 МПа; δ=37%; ψ=68, где σв - предел прочности.

Старение закаленных образцов осуществлялось на универсальной напольной электромеханической испытательной машине «INSTRON 5882» при скорости нагружения 1,5 мм/мин при комнатной температуре под нагрузкой σн=0,9 σ0,2. Здесь σн - нагрузка на образец; σ0,2 - предел текучести закаленных образцов при комнатной температуре.

Анализируя результаты исследований, приведенные в таблице 1, можно сделать следующие выводы: предложенный способ обработки позволяет увеличить прочностные характеристики с сохранением пластических характеристик в сравнении с результатами обработки по прототипу.

В таблице 1 приведены технологические режимы осуществления описанных способов обработки и полученные при этом показатели механических свойств.

Таблица 1
Некоторые характеристики параметров титана.
Вид обработки Механические характеристики
Предел прочности, (МПа) Пластичность, %
Способ обработки титана ВТ1-0 [аналог]: Нагрев со скоростью 60-80°C/мин до τn 260-280°C. Выдержка 15-30 мин, охлаждение со скоростью 70-80°C/мин 620-670 10-11
Обработка по прототипу: Нагрев со скоростью 10°C/мин до τn 440°C, выдержка 100 мин, охлаждение со скоростью 6°C/мин до τn 440°C, далее охлаждение со скоростью 50°C/мин до температуры 40°C 780 14
Обработка по предложенному способу: Нагрев со скоростью 10°C/мин до температуры 1000°C, выдержка 20 минут, охлаждение со скоростью 300°C/с в воду при 20°C, старение под нагрузкой σн=0,9*σ0,2 при 20°C до выхода релаксационной кривой на постоянную скорость. 650-700 37-40

Формула изобретения

Способ обработки изделий из титана ВТ1-0, включающий нагрев, выдержку и охлаждение изделий из титана, отличающийся тем, что нагрев проводят до температуры, превышающей температуру полиморфного превращения, выдержку осуществляют при температуре нагрева в течение 10-15 мин, охлаждение ведут в хладагенте со скоростью 300°C/с, после чего осуществляют старение под нагрузкой при температуре 18-25°C, напряжении, не превышающем предела текучести при температуре старения, и времени, необходимом для выхода на устойчивую скорость релаксационного процесса.

Изобретение "СПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ТИТАНА МАРКИ ВТ1-0" (Камышанченко Николай Васильевич, Никулин Иван Сергеевич, Кунгурцев Максим Сергеевич, Кунгурцев Егор Сергеевич, Дурыхин Михаил Иванович, Неклюдов Иван Матвеевич) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля