Название | Бесплатформенная инерциальная навигационная система подвижного объекта |
---|---|
Разработчик (Авторы) | Хмелевский А.С., Щипицын А.Г. |
Вид объекта патентного права | Изобретение |
Регистрационный номер | 2676941 |
Дата регистрации | 11.01.2019 |
Правообладатель | Хмелевский Анатолий Сергеевич, Щипицын Анатолий Георгиевич |
Изобретение относится к бесплатформенным инерциальным навигационным системам подвижных объектов. Бесплатформенная инерциальная навигационная система подвижного объекта дополнительно содержит три ротора с идентифицированными массогеометрическими характеристиками, вращающихся вокруг осей, каждый из которых представляет собой пять датчиков сил, указанные датчики сил контактируют с осью вращения в режиме подшипников скольжения, а противоположные концы датчиков сил контактируют с корпусом, жестко установленным на объекте, каждый датчик силы выдает сигнал, равный его силе сжатия; ротор приводится в движение моментным двигателем и снабжен датчиками угла поворота, угловой скорости и углового ускорения; выходы датчиков силы и датчиков угла, угловой скорости и углового ускорения подключены к входу бортового компьютера, в котором последовательно вычисляются реакции опор осей вращения роторов инерциальных датчиков, восемнадцать переменных инерциальной информации с использованием избыточности для контроля правильности вычислений и повышения надежности, пятнадцать переменных навигационной информации и функция управления движением объекта. Технический результат – повышение точности навигационных измерений для высокоскоростного маневренного объекта. 6 ил.
Область техники, к которой относится изобретение
Изобретение относится к области приборостроения и может быть использовано при создании бесплатформенных инерциальных навигационных систем, водящих в состав инерциального навигационного комплекса для высокоскоростного маневренного объекта [1] в качестве бесплатформенной инерциальной навигационной системы, дублирующей основную бесплатформенную инерциальную навигационную систему подвижного объекта.
Используемые термины
Для существенного сокращения текста описания и формулы целесообразно перечислить используемые термины применительно к заявляемому устройству:
Объект - движущееся в пространстве управляемое тело с целенаправленным перемещением из одной области пространства в другую.
Полюс объекта - точка, для которой определяются переменные его поступательного движения - это, как правило, начало связанной с ним системы координат; в частности, полюсом объекта может быть его центр масс.
Датчиковая система координат - система координат, связанная с инерциальным датчиком; в заявляемом устройстве - это система координат, связанная с ротором, начало которой помещено в «нижний» конец его оси вращения, третья ось направлена по оси вращения в положительном направлении вектора угловой скорости ротора, две другие оси образуют с третьей осью правую тройку; в датчиковой системе координат заданы массогеометрические параметры ротора: проекции радиуса-вектора центра масс и компоненты тензора инерции.
Объектная система координат - связанная с объектом система координат, начало которой совмещено с его полюсом, оси которой направлены в соответствии с задачами управления его движением.
Установочная система координат - система координат, связанная с объектом, начало которой помещено в начало датчиковой системы координат, ее третья ось, по которой направлена ось вращения ротора инерциального датчика, отклонена на два угла относительно объектной системы координат, а две другие ее оси образуют с третьей осью правую тройку: эта система координат введена для построения математической модели динамики инерциального датчика, произвольно установленного на произвольно движущемся в пространстве объекте; путем варьирования численных значений двух углов можно установить инерциальный датчик требуемым образом относительно объекта.
Земная географическая система координат - связанная с Землей система координат, начало которой находится на поверхности Земли (в частности, совпадает с точкой начала движения объекта), первая ось направлена на Восток, вторая - на Север, третья - в зенит;
Земная геоцентрическая система координат - связанная с Землей система координат, начало которой помещено в центр сферической Земли, оси образуют правую тройку, при этом первая ось пересекает нулевой меридиан, третья ось направлена на Север (вдоль этой оси направлен вектор угловой скорости суточного вращения Земли).
Инерциальная система координат - связанная с абсолютно неподвижной в пространстве системой отсчета, оси которой образуют правую тройку и в начальный момент времени наблюдения за движением объекта параллельны осям земной геоцентрической системы координат.
Инерциальный датчик - электро-электронно-механическое устройство, выходные сигналы которого зависят от кинематических характеристик движения объекта и от конструктивных характеристик и принципов работы датчика, в заявляемом устройстве -это ротор, вращающийся вокруг оси, установленной в два опорных узла, каждый из которых представляет собой пять датчиков сил, четыре из которых перпендикулярны оси и взаимно перпендикулярны, а пятый установлен вдоль оси на ее торце, указанные датчики силы контактируют с осью в режиме подшипника скольжения, а противоположные концы датчиков силы контактируют с корпусом, жестко установленном на объекте, каждый датчик силы выдает сигнал, равный его силе сжатия; ротор приводится в движение моментным двигателем и около ротора имеются датчики угла поворота, угловой скорости и углового ускорения; выходы датчиков силы и датчиков угла, угловой скорости и углового ускорения подключены ко входу встроенного компьютера по беспроводной технологии передачи информации.
Встроенный компьютер - это вычислительное устройство, встроенное в инерциальный датчик или входящее в состав бортового компьютера, в котором хранится информация о структуре инерциального датчика и в который инсталлировано программное обеспечение для процедуры определения сил реакций опор оси вращения ротора на основе обработки сигналов датчиков сил, то есть вход во встроенный компьютер - это сигналы датчиков сил, а его выход - пять проекций векторов сил реакций опор оси вращения ротора (три - в нижней опоре, две - в верхней опоре) в установочной системе координат.
Первичная информация - это совокупность сигналов датчиков сил, установленных указанным выше способом между осями роторов и корпусами инерциальных датчиков, жестко связанных с объектом; на основе этой информации вычисляются указанные выше проекции векторов сил реакций опор осей вращения роторов инерциальных датчиков.
Инерциальная информация в заявляемом устройстве - это совокупность восемнадцати переменных, вычисляемых на основе первичной информации трех инерциальных датчиков, оси ращения роторов которых взаимно перпендикулярны; указанные пятнадцать переменных инерциальной информации - это: три проекции вектора кажущегося ускорения полюса объекта три проекции вектора абсолютного углового ускорения объекта, три проекции вектора абсолютной угловой скорости объекта и девять произведений проекций вектора абсолютной угловой скорости объекта друг на друга; все указанные проекции векторов - на оси объектной системы координат, определение переменных инерциальной информации сводится к решению системы линейных алгебраических уравнений восемнадцатого порядка.
Навигационная информация - переменные, на основе которых осуществляется управление движением объекта, в заявляемом устройстве - это пятнадцать переменных: переменные ориентации объекта от базовой (например, земной географической системы координат) к объектной системе координат (это, например, девять направляющих косинусов), три проекции вектора скорости полюса объекта и три проекции радиуса-вектора полюса объекта (то есть три координаты объекта) в базовой системе координат.
Функция управления движением объекта - в заявляемом устройстве это сумма средневзвешенных модулей разностей определяемых бесплатформенной инерциальной навигационной системой переменных навигационной информации и соответствующих функций времени, задающих требуемые программные движения объекта, то есть функция управления движением объекта представляет собой рассогласования реальных и программных движений объекта, которые система управления его движением должна сводить к нулю в каждый текущий момент времени.
Блок инерциальной информации - устройство, состоящее из трех инерциальных датчиков, каждый из которых построен на вращающемся роторе с установленными указанным выше образом датчиками сил в режиме подшипников скольжения оси вращения; оси вращения трех роторов являются некомпланарными в общем случае, а в частности, являются взаимно перпендикулярными; выходы инерциальных датчиков подключены ко входу локального компьютера по беспроводной технологии передачи информации, в котором инсталлировано программное обеспечение для процедуры определения переменных инерциальной информации на основе первичной информации.
Локальный компьютер - вычислительное устройство, встроенное в блок инерциальной информации или входящее в состав бортового компьютера, в котором хранится информация о структуре блока инерциальных датчиков и в который инсталлировано программное обеспечение, входом в которое являются переменные первичной информации, а выходом являются переменные инерциальной информации.
Бортовой компьютер - вычислительное устройство, в котором хранится априорная информация о гравитационном поле (Земли), базовом вращении (вращении Земли) и начальных условиях об ориентации, движении и положении объекта, входом которого являются переменные инерциальной информации, а выходом - переменные навигационной информации и в который инсталлировано программное обеспечение для процедуры функционирования бесплатформенной инерциальной навигационной системы, то есть определения переменных навигационной информации и функции управления движением объекта на основе переменных инерциальной и априорной информации; следует отметить, что разделение общего вычислительного устройства (бортового компьютера) бесплатформенной инерциальной навигационной системы на встроенный, локальный и собственно бортовой компьютер является условным с целью удобства пояснения сути вычислительных процедур, реализуемых соответственно в инерциальном датчике, блоке инерциальной информации и собственно в бесплатформенной инерциальной навигационной системе.
Бесплатформенная инерциальная навигационная система - электро-электронно-механическое устройство, состоящее из блока инерциальной информации, подключенного к бортовому компьютеру, выходом которого являются переменные навигационной информации и функция управления движением объекта, поступающие на вход системы управления движением объекта.
Функционирование бесплатформенной инерциальной навигационной системы -процесс получения навигационной информации об ориентации объекта в системе координат, в которой решается задача навигации и управления им (например, направляющих косинусах от земной системы координат к объектной системе координат), движении объекта (проекций вектора скорости полюса объекта в земной системе координат), положении объекта (проекций радиуса-вектора полюса объекта в земной системе координат) и функции управления движением объекта на основе обработки первичной информации с привлечением априорной информации о гравитационном поле Земли, вращении Земли и начальных ориентации, движении и положении объекта относительно Земли.
Идентификация параметров инерциального датчика - процедура определения реальных конструктивных параметров инерциального датчика, основанная на его стендовых испытаниях, физически моделирующих поступательные и угловые движения объекта с обработкой получаемой при этих испытаниях первичной информации с последующим вычислением параметров инерциального датчика; для этой процедуры требуется разработка соответствующего программного обеспечения.
Массогеометрические характеристики инерциального датчика - в заявляемом устройстве - это постоянные во времени параметры: расстояние между опорами оси вращения ротора, масса ротора с осью вращения, координаты центра масс ротора и компоненты тензора инерции ротора в датчиковой системе координат.
Уровень техники
Известна бесплатформенная инерциальная навигационная система, построенная на трех взаимно ортогональных датчиках угловой скорости и трех взаимно ортогональных акселерометрах, выходы которых подключены к бортовому компьютеру, в котором вычисляются переменные навигационной информации и функция управления движением объекта [2, 3, 4].
Недостатком этого устройства является невозможность его использования для навигационных измерений в составе инерциального навигационного комплекса для высокоскоростного маневренного объекта [1].
Известен способ построения инерциальной навигационной системы [5], заключающийся в установке на объекте бесплатформенной инерциальной навигационной системы, состоящей из блока инерциальной информации, в состав которого входят один датчик углового движения (например, датчик угловой скорости) и один датчик поступательного движения (например, акселерометр), блок инерциальной информации жестко закреплен на оси, приводящейся во вращение двигателем и снабженной тахометром для измерения ее угловой скорости относительно объекта, во время движения объекта измеряют сигналы указанных датчиков в окрестностях координатных осей связанной с объектом системы координат и далее обрабатывают их с привлечением необходимой априорной информации для получения переменных навигационной информации. Известны также и усовершенствования [6, 7, 8] этого способа путем установки датчиков сил на оси вращения и соответствующей обработки измерительной информации. В изобретениях [5, 6, 7, 8] по способам построения инерциальных навигационных систем зафиксирована идея уменьшения количества инерциальных датчиков в системе путем принудительного вращения акселерометра относительно стабилизированной платформы или принудительного вращения относительно объекта двух датчиков, один из которых - акселерометр, второй - датчик угловой скорости. Если в дополнение к этим способам установить на оси вращения датчики сил, то измеряемая ими информация и ее обработка позволит получить избыточную инерциальную информацию с целью использования ее для повышения точности навигационной информации. Область применения таких систем ограничена объектами с медленно-меняющимися или с программно-меняющимися кинематическими характеристиками, то есть такие системы невозможно использовать для навигационных измерений в составе инерциального навигационного комплекса для высокоскоростного маневренного объекта [1] даже в качестве дублирующей основную бесплатформенную инерциальную навигационную систему.
Раскрытие изобретения
Задачей заявляемого устройства является обеспечение функциональных и точных навигационных измерений для высокоскоростного маневренного объекта [1].
Решение поставленной задачи основано на следующих идеях: 1) использование нескольких однотипных инерциальных датчиков для построения блока инерциальной информации; 2) использование в качестве основного элемента инерциального датчика ротора, ось вращения которого неподвижно установлена в подшипники скольжения, в качестве которых использованы работающие на сжатие датчики сил [10, 11], установленные на оси вращения ротора таким образом, чтобы на основе их сигналов можно было определить реакции опор оси вращения ротора; 3) идентификация параметров каждого инерциального датчика в блоке инерциальной информации и использование величин этих параметров при вычислении переменных инерциальной информации в течение всего интервала времени навигационных измерений.
Поставленная задача решается тем, что бесплатформенная инерциальная навигационная система состоит из трех инерциальных датчиков, каждый из которых построен на роторе, приводящемся во вращение моментным двигателем и снабженным датчиками угла, угловой скорости и углового ускорения [9]; каждый ротор вращается вокруг оси, установленной в два опорных узла, каждый из которых представляет собой пять датчиков сил, четыре из которых перпендикулярны оси и взаимно перпендикулярны, а пятый установлен вдоль оси на ее торце, указанные датчики силы контактируют с осью в режиме подшипника скольжения, а противоположные концы датчиков сил контактируют с корпусом, жестко установленном на объекте, каждый датчик силы выдает сигнал, рваный его силе сжатия; выходы датчиков сил и датчиков угла, угловой скорости и углового ускорения подключены к входу встроенного компьютера по беспроводной технологии передачи информации.
На основе измеряемых угла поворота ротора, его угловой скорости, его углового ускорения и сигналов датчиков сил далее последовательно: 1) во встроенном компьютере вычисляют пять сил реакций опор оси вращения ротора для каждого инерциального датчика, 2) в локальном компьютере вычисляют восемнадцать переменных инерциальной информации, 3) в бортовом компьютере вычисляют пятнадцать переменных навигационной информации с привлечением априорной информации об угловой скорости Земли, ее гравитационном поле и начальных условиях о движении объекта, а затем вычисляют функцию управления движением объекта с привлечение априорной информации о программных законах движения объекта во времени. Подача сигналов датчиков сил в локальный компьютер осуществляется по беспроводной технологии передачи информации [12].
Формула изобретения
Бесплатформенная инерциальная навигационная система подвижного объекта, содержащая датчики угловой скорости и датчики кажущегося ускорения, подключенные к бортовому компьютеру, в котором хранится априорная информация о вращении Земли, ее гравитационном поле и начальных условиях о движении объекта и в каждый текущий момент времени последовательно вычисляются шесть переменных инерциальной информации, пятнадцать переменных навигационной информации и функция управления движением объекта, отличающаяся тем, что в качестве инерциальных датчиков использованы три ротора с идентифицированными массогеометрическими характеристиками, вращающихся вокруг осей, каждая из которых установлена в два опорных узла, каждый из которых представляет собой пять датчиков сил, четыре из которых перпендикулярны оси вращения и взаимно перпендикулярны, а пятый установлен вдоль оси вращения на ее торце, указанные датчики сил контактируют с осью вращения в режиме подшипников скольжения, а противоположные концы датчиков сил контактируют с корпусом, жестко установленным на объекте, каждый датчик силы выдает сигнал, равный его силе сжатия; ротор приводится в движение моментным двигателем и снабжен датчиками угла поворота, угловой скорости и углового ускорения; выходы датчиков силы и датчиков угла, угловой скорости и углового ускорения подключены ко входу бортового компьютера по беспроводной технологии передачи информации, в котором последовательно вычисляются реакции опор осей вращения роторов инерциальных датчиков, восемнадцать переменных инерциальной информации с использованием избыточности для контроля правильности вычислений и повышения надежности, пятнадцать переменных навигационной информации и функция управления движением объекта.