L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ


НазваниеКОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ
Разработчик (Авторы)Абдрахимова Елена Сергеевна, Абдрахимов Владимир Закирович, Кайракбаев Аят Крымович
Вид объекта патентного праваИзобретение
Регистрационный номер 2576537
Дата регистрации 10.03.2016
Правообладательфедеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ)
Область применения (класс МПК) C04B 28/34 (2006.01) C04B 111/20 (2006.01)

Описание изобретения

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких бетонов. Композиция для изготовления жаростойких бетонов, включающая отработанный катализатор ИМ-2201, щебень из карбонатных пород фракции 5-10 мм, речной песок с модулем крупности 1,68 и H3PO4, дополнительно содержит железосодержащий шлак ТЭЦ с содержанием, мас.%: SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2; MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 при следующем содержании компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень из карбонатных пород фракции 5-10 мм 33-40, речной песок с модулем крупности 1,68 10-13, H3PO4 10-15, железосодержащий шлак ТЭЦ с содержанием, мас.%:SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2; MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 24-30. 3 табл.

 

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. К химически связующим, применяемых в жаростойких бетонах, относятся жидкое стекло» силикат-глыбу (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.

Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас.%: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 / пат. Российской Федерации №2440312, МПК C04B 14/24. Композиция для производства пористого заполнителя. / Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. №2010122114. заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2 / [1].

Недостатком: указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.

Наиболее близкой к изобретению является композиция для получения жаростойких бетонов (композитов), включающая следующие компоненты, мас.%: отработанный катализатор ИМ-2201 - 10-15; щебень - 33-40; песок -10-13; Н3РО4 - 10-15; шлаки от выплавки ферротитана с содержанием, мас.%: SiO2 - 2,5; Al2O3 - 72,18; TiO2 - 10,2; Fe2O3 - 0,30; CaO - 11,4; MgO - 3,3 - 24-30 / пат. Российской Федерации №2521005, МПК С04В 28/34. Композиция для изготовления жаростойких композитов. / Абдрахимова E.С., Рощупкина И.Ю., Абдрахимов В.З., Колпаков А.В.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени С.П. Королева. №201312609. Заявл. 21.01.2013; опубл. 27.06.2014. Бюл. №18 [2].

Недостатком указанного состава композиции является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°C и низкая термостойкость.

Задача изобретения - повышение качества жаростойкого бетона.

Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких бетонов (композитов).

Указанный технический результат достигается тем, что в известную композицию включающую отработанный катализатор ИМ-2201, щебень из карбонатных пород фракции 5-10 мм, речной песок с модулем крупности 1,68 и Н3РО4, дополнительно вводят железосодержащий шлак ТЭЦ с содержанием, мас.%: SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2; MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 при следующем содержании компонентов, мас.%:

отработанный катализатор ИМ-2201 10-15
щебень из карбонатных пород фракции 5-10 мм 33-40
речной песок с модулем крупности 1,68 10-13
H3PO4 10-15
железосодержащий шлак ТЭЦ с содержанием, мас.%:
SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2;
MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 24-30

Железосодержащий шлак является отходом Ново-Иркутской ТЭЦ. Ново-Иркутская ТЭЦ является основным источником тепла системы централизованного теплоснабжения Иркутска и участвуют в покрытии электрических нагрузок энергосистемы Сибири. Теплоэлектроцентраль запроектирована для сжигания бурых углей Восточной Сибири. Количество твердых остатков для каменных и бурых углей колеблется от 14 до 40%. Шлаки представляют собой агрегированные частицы размером от 1.15 до 30 мм. В состав шлаков постоянно присутствуют частицы несгоревшего топлива (недожог), количество которого могут составлять 10-25%.

Химический состав железосодержащего шлака ТЭЦ представлен в таблице 1.

Для изготовления жаростойких бетонов использовались:

А) щебень, отвечающий требованиям ГОСТа Г 8267-93 «Щебень и гравий из плотных горных пород для строительных работ. Технические условия» М 600, 800-1000, со средней плотностью зерен от 2,0 до 2,5 кг/м3 из карбонатных пород, добываемый в Самарской области, фракции 5-10 мм;

Б) песок, отвечающий требованиям ГОСТ 8736-93 «Песок для строительных работ. Технические условия». Песок речной, добываемый в Самарской области, имел следующие показатели: средняя плотность в сухом состоянии - 1,5 кг/м3; содержание илистых, пылевидных и глинистых частиц не более - 0,7% по массе; истинная плотность песка речного - 2,65 г/см3; наличие суглинка, комков глины и прочих засоряющих примесей не более - 0,05%; модуль крупности - 1,68.

Для изготовления жаростойких бетонов использовалась в качестве связующей ортофосфорная кислота Н3РО4 в чистом виде по ГОСТ 6552-80, норма - чистый (ч.) ОКП 261213002110. Массовая доля ортофосфорной кислоты (Н3РО4) не менее 85%, плотность не менее 1,69 г/см3.

В предложенных составах (таблица 2), как и в прототипе, использовался отработанный катализатор ИМ-21 (отходы производства), отвечающий требованиям - ТУ 38.103544-89. Химический состав катализатора представлен в таблице 1.

Согласно ТУ 38.103544-89 отработанный катализатор ИМ-2201 должен иметь следующие показатели: внешний вид порошка - серо-зеленого цвета, насыпная плотность 1,0-1,5 г/см3; массовая доля Al2O3 не менее 70%.

Сведения, подтверждающие возможность осуществления изобретения. Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.

Следует отметить, что для своего затвердения и набора марочной прочности жаростойкие бетоны требуют особой термообработки.

Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 2, - нагревание до 500°C с подъемом температуры до 200°C со скоростью 60°C/ч и до 500°C - 150°C/ч, выдерживание в течение 4 часов, охлаждение вместе с печью.

Оксид трехвалентного железа Fe2O3, содержащийся в железосодержащем шлаке ТЭЦ (около 70%) при нормальной температуре взаимодействует с ортофосфориой кислотой Н3РО4 очень медленно; поэтому требуется подогрев смеси до 70°C, так как собственного тепла по реакции выделяется недостаточно:

Fe2O3+2H3PO4+H2O→2(FePO4·2H2O) - 8,65 кДж/моль.

Оксид двухвалентного железа FeO, содержащийся в железосодержащем шлаке ТЭЦ (около 30%), наоборот, реагируют с кислотой энергично, выделяя при этом значительное количество тепла. Так, оксид двухвалентного железа активно взаимодействует с ортофосфорной кислотой при температуре 20°C. Цементное тесто начинает схватываться через 2 минуты за счет значительного выделения тепла:

3FeO+2H3PO4→Fe3(PO4)2+3H2O - 124,74 кДж/моль.

В таблице 3 представлены физико-механические показатели жаростойкого бетона.

Как видно из таблицы 3, жаростойкий бетон из предложенных составов имеет более высокие показатели до механической прочности и термостойкости, чем прототип.

Полученное техническое решение при использовании железосодержащего шлака ТЭЦ позволяет значительно повысить показатели по механической прочности и термостойкости жаростойкого бетона.

Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды и расширению сырьевой базы для строительных материалов.

 

Формула изобретения

Композиция для изготовления жаростойких бетонов, включающая отработанный катализатор ИМ-2201, щебень из карбонатных пород фракции 5-10 мм, речной песок с модулем крупности 1,68 и H3PO4, отличающаяся тем, что она дополнительно содержит железосодержащий шлак ТЭЦ с содержанием, мас.%: SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2; MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 при следующем содержании компонентов, мас.%:

отработанный катализатор ИМ-2201 10-15
щебень из карбонатных пород фракции 5-10 мм 33-40
речной песок с модулем крупности 1,68 10-13
H3PO4 10-15
железосодержащий шлак ТЭЦ с содержанием, мас.%:
SiO2 - 53,3; Al2O3 - 4,5; Fe2O3 - 31,5; CaO - 1,2;
MgO - 0,5; Na2O - 0,47; K2O - 0,13; п.п.п. - 8,4 24-30
Изобретение "КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ" (Абдрахимова Елена Сергеевна, Абдрахимов Владимир Закирович, Кайракбаев Аят Крымович ) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля