Название | СПОСОБ ПЕРЕРАБОТКИ ПРОДУКТОВ ФЕРМЕНТАЦИИ РАСТИТЕЛЬНОЙ БИОМАССЫ В АЛКАНОВЫЕ УГЛЕВОДОРОДЫ |
---|---|
Разработчик (Авторы) | Цодиков М.В., Чистяков А.В., Яндиева Ф.А., Кугель В.Я., Бухтенко О.В., Жданова Т.Н., Гехман А.Е., Моисеев И.И. |
Вид объекта патентного права | Изобретение |
Регистрационный номер | 2385855 |
Дата регистрации | 06.10.2008 |
Правообладатель | Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева РАН |
Изобретение относится к способу переработки продуктов ферментации растительной биомассы в алкановые углеводороды фракции С4-С10 путем реакции кросс-конденсации в присутствии Fe2O3-MgO/Al2O3 и Pt/Al2O3 катализатора при соотношении Fe:Mg:Pt=13:2:1, которую ведут при температуре 320-370°С, давлении аргона 1-5 МПа и удельной скорости подачи исходного сырья на катализатор, равной 0,4-0,8 дм3/ч·дм3 кат. Применение настоящего способа позволяет снизить газообразование и увеличить выход насыщенных углеводородов. 3 табл.
Изобретение относится к области гетерогенно-каталитических превращений органических соединений, а именно к каталитическому превращению смесей алифатических спиртов в смесь углеводородов алкан-олефинового ряда, в частности С4-С10 углеводородов, являющихся эффективными добавками к углеводородным топливам различного назначения.
Начало XXI века многие специалисты характеризуют как окончание эры дешевой нефти. В связи с растущими энергетическими потребностями человечеству приходится искать альтернативные виды топлив. К альтернативным относятся вещества, которые смогут применяться в двигателях внутреннего сгорания или энергетических установках вместо топлив нефтяного происхождения. Наибольшее распространение в настоящее время получили двигатели, работающие на невосполнимых видах топлив (бензин, дизель, природный газ), по существующим оценкам как минимум еще до 2030 человечество будет использовать углеводородное топливо в двигателях внутреннего сгорания [1]. Вместе с этим, с целью улучшения экологии продолжается тенденция по ужесточению требований к составу топлива, связанное главным образом с ограничением использования ароматических углеводородов. В этой связи повышается актуальность и значимость альтернативных процессов, направленных на получение алкановых и олефиновых углеводородов.
В последние годы внимание исследователей всего мира обращено на спиртовые топлива, преимущества и недостатки их использования в двигателях внутреннего сгорания. Наибольшее распространение нашли низшие алифатические спирты: метанол и этанол. Высшие спирты рассматриваются в качестве стабилизирующих добавок. В настоящее время метанол синтезируют из синтез-газа, этанол получают прямой гидратацией этилена, а также, все в большем количестве, из возобновляемого сырья - растительной биомассы [2, 3].
В зависимости от условий ферментативного сбраживания растительной массы состав получаемой спиртовой смеси может быть различен. Главным продуктом является этанол, после очистки от клеток и других компонентов культуральной жидкости (остатков субстрата) получаемая спиртовая смесь содержит ~90% этанола, остальное представляет собой так называемое сивушное масло [4].
Состав сивушного масла этанольного брожения биомассы представлен ниже:
Спирт | мас.% |
Этанол | 3,1 |
н-Пропанол | 3,6 |
Изобутанол | 20,0 |
Изоамиловый спирт | 73,3 |
Однако существует возможность использовать продукты ферментации биомассы в качестве сырья для получения синтетического бензина или его высокооктановых компонентов: алкилароматических углеводородов и алканов изостроения. Получаемое топливо экологически чистое, ввиду отсутствия в нем соединений серы и азота.
Также следует отметить, что в связи с ужесточающимися экологическими требованиями, предъявляемыми к автомобильному транспорту, алкановая фракция является наиболее ценной, ведь именно она обеспечивает в большей степени экологическую приемлемость топлива.
Известен способ получения C8 или С10 углеводородов, преимущественно диметилалканов, путем контактирования алифатического спирта, в качестве которого используют изобутанол или изопентанол, с каталитической композицией, содержащей гидридную фазу железотитанатного интерметаллического соединения, модифицированного металлами IV-VII групп, и промышленный алюмоплатиновый или алюмоникелевый катализатор при массовом отношении промышленного катализатора к интерметаллическому соединению, равном 1:10, в среде инертного газа при температуре 300-420°С, давлении 30-80 атм и объемной скорости 0,1-0,8 ч-1 [5].
В описанном способе предусматривается использование каталитической композиции, содержащей в качестве гидридной фазы железотитанатного интерметаллида соединение общей формулы Ti1-xFe1-yMzHn, где М - один или несколько металлов IV-VII групп; лантаноиды или их смесь в виде мишметалла; х=0-0,3; y=0-0,7; z=0-0,7; n>0. Предпочтительно используют согласно изобретению [TiFe0,95Zr0,03Мо0,02]Н2 или [TiFe0,95Mn0,03Cr0,02]Н2, наряду с которым используют промышленные алюмоплатиновые типа АП-56, Ап-64 или алюмоникелевые катализаторы.
Согласно описанному методу продуктами превращения соответствующих алифатических спиртов являются газообразная фракция, содержащая насыщенные углеводороды C1-C4, жидкая углеводородная фракция и вода. Жидкая углеводородная фракция содержит до 50% продуктов димеризации углеродного остова спирта, 10-15% кислородсодержащих соединений.
К недостаткам изложенного метода следует отнести высокое газообразование (60-70%, среди которых образуется большое количество метана), а также низкую химическую и механическую устойчивость интерметаллического соединения, которое быстро становится хрупким и разрушается.
Наиболее близким решением аналогичной задачи является способ получения алкановой фракции С4-С16, преимущественно изостроения, путем контактирования этанола с каталитической композицией, содержащей гидридную фазу железотитанатного интерметаллического соединения, модифицированного металлами IV-VII групп, и γ-оксида алюминия, взятых в массовом соотношении 10:1, и промышленный алюмоплатиновый катализатор, взятый в массовом отношении к интерметаллическому соединению, равном 1:10, в среде инертного газа при температуре 300-420°С, давлении 30-80 атм и объемной скорости 0,2-0,8 ч-1 [6].
В описанном способе предусматривается использование каталитической композиции, содержащей в качестве гидридной фазы железотитанового интерметаллического соединения, модифицированного металлами IV-VII групп, общей формулы Ti1-xFe1-yMzHn, где М - один или несколько металлов IV-VII групп; лантаниды или их смесь в виде мишметалла; х=0-0,3; y=0-0,7; z=0-0,7; n>0. Предпочтительно используют согласно изобретению [TiFe0,95Zr0,03Мо0,02]Н2 или [TiFe0,95Mn0,03Cr0,02]H2 и промышленные катализаторы - алюмоплатиновые катализаторы типа АП-56, АП-64.
К недостаткам изложенного способа следует отнести высокое газообразование (60-70%, среди которых образуется большое количество метана), невысокий выход продуктов реакции, а именно С4-С10 10-20%, а также низкую химическую и механическую устойчивость интерметаллического соединения, которое быстро становится хрупким.
Задача настоящего изобретения заключается в разработке способа переработки продуктов ферментации биомассы в алкановую фракции С4-С10 в присутствии катализатора, обладающего высокой стабильностью, позволяющего снизить газообразование и увеличить выход насыщенных углеводородов.
Поставленная задача решается тем, что предложен способ переработки продуктов ферментации растительной биомассы в алкановые углеводороды фракции С4-С10 путем реакции кросс-конденсации в присутствии Fe2O3-MgO/Al2O3 и Pt/Al2O3 катализатора при соотношении Fe:Mg:Pt=13:2:1, которую ведут при температуре 320-370°С, давлении аргона 1-5 МПа и удельной скорости подачи исходного сырья на катализатор, равной 0,4-0,8 дм3/ч·дм3кат.
Реакция кросс-конденсации углеводородных остовов различных спиртов была обнаружена авторами и описана в работе [7] на примере этанола и циклопентанола, приводящая к образованию алкилзамещенных циклопентанов.
Однако для переработки продуктов ферментации биомассы в алкановые углеводороды это реакция применяется впервые.
Таким образом, предлагаемое изобретение позволяет снизить газообразование на 30% и повысить выход фракции углеводородов С4-С10 более чем на 10% при времени работы катализатора 35 часов по сравнению с прототипом (5-10 часов).
Формула изобретения
Способ переработки продуктов ферментации растительной биомассы в алкановые углеводороды фракции С4-С10 путем реакции кросс-конденсации в присутствии Fe2O3-MgO/Al2O3 и Pt/Al2O3 катализатора при соотношении Fe:Mg:Pt=13:2:1, которую ведут при температуре 320-370°С, давлении аргона 1-5 МПа и удельной скорости подачи исходного сырья на катализатор, равной 0,4-0,8 дм3/ч·дм3 кат.