L международная выставка-презентация
научных, технических, учебно-методических и литературно-художественных изданий

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПАРОВОЙ КОНВЕРСИИ МЕТАНСОДЕРЖАЩИХ УГЛЕВОДОРОДОВ


НазваниеСПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПАРОВОЙ КОНВЕРСИИ МЕТАНСОДЕРЖАЩИХ УГЛЕВОДОРОДОВ
Разработчик (Авторы)Цодиков М.В., Курдюмов С.С., Бухтенко О.В., Жданова Т.Н.
Вид объекта патентного праваИзобретение
Регистрационный номер 2375114
Дата регистрации11.07.2008
ПравообладательУчреждение Российской академии наук Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева РАН

Описание изобретения

Изобретение относится к способу получения катализатора, применяемого для процессов конверсии углеводородного сырья в водород и водородсодержащие газы. Описан способ получения катализатора паровой конверсии метансодержащих углеводородов на основе шпинельсодержащего носителя, отличающийся тем, что носитель получают осаждением неорганических компонентов из растворов кислотного травления вермикулитовой руды растворами шелочи с последующей прокалкой полученного осадка при температуре, обеспечивающей получение сложной шпинели типа Mg [Al, Fe]2O4, причем растворы кислотного травления вермикулитовой руды и щелочи берут в количествах, обеспечивающих содержание оксидов магния, железа и алюминия в готовом катализаторе, отвечающее их массовому соотношению 1:0,6:1, носитель выделяют, гранулируют, сушат и прокаливают, после чего наносят никель в количестве 6-15 мас.% в готовом катализаторе и вновь прокаливают. Технический результат - расширение сырьевой базы для производства катализатора паровой конверсии метансодержащих углеводородов. 3 табл., 2 ил.

 

Изобретение относится к способу получения катализатора, применяемого для процессов конверсии углеводородного сырья в водород и водородсодержащие газы.

Паровая конверсия углеводородного сырья является наиболее экономически эффективным методом производства водорода, синтез-газа для оксосинтеза и азотоводородной смеси для получения аммиака.

Технологически метод хорошо разработан и позволяет проводить процесс при высоких давлениях и температуре. Поскольку процесс является каталитическим, важной проблемой остается создание и производство высокоэффективных катализаторов, обладающих повышенными активностью, селективностью и стабильностью.

Современные катализаторы паровой конверсии, выпускаемые различными фирмами, имеют близкие по величине показатели активности и обеспечивают эксплуатацию катализаторов в течение 4-5 лет.

Различия в концентрации никеля в разных марках катализаторов служат, скорее, мерой «элегантности» технических решений, использованных при конструировании этих катализаторов [В.В.Веселов. «Катализаторы конверсии углеводородов», 1979, с.216; Ulmanns Encyclopaedia of Industrial Chemistry, 5th Edn, 1989, vol.A12, p.186 - 202; C.N.Satterfield «Heterogeneous Catalysis in Industrial Practice», McGraw Hill, New York, 1991].

Условия эксплуатации катализаторов паровой конверсии выдвигают достаточно жесткие требования к катализаторам и, соответственно, к носителям для катализаторов. Основу большинства носителей составляет α-Аl2O3, наиболее устойчивая фаза из существующих разновидностей оксида алюминия, с высокой термостабильностью, исключающей возможность структурной химической эрозии носителя под действием водяного пара.

Известен способ получения алюмоникелевого катализатора высокой плотности и механической прочности, описанный в патенте US 5110781 А, B01J 21/04, 05.05.1992.

В качестве исходного материала используют γ-Al2O3, который пропитывают азотнокислым никелем и далее прокаливают для перевода нитрата никеля в оксид.

К недостаткам способа можно отнести высокую температуру прокалки катализатора (1200°С) и низкую удельную поверхность получающейся α-Al2О3.

Известен способ получения Ni-содержащего катализатора паровой конверсии метана, носителем которого является высокочистый α-Al2О3, получаемый из переосажденного оксида алюминия. В качестве диспергатора и промотора активного компонента используют оксид лантана, что повышает устойчивость к зауглероживанию и позволяет работать при низких отношениях пар/углерод.

К недостаткам можно отнести то, что α-Al2O3 имеет низкие значения удельной поверхности, а процессы переосаждения оксида алюминия и введение в систему оксида лантана повышают стоимость катализатора [RU 2185239 С1, кл. В01J 23/83, 20.07.2002].

Достаточно большую группу составляют Ni-содержащие катализаторы на керамических носителях, содержащих помимо α-Al2O3 также алюминаты кальция.

Так, в патенте US 6261991 B1, B01J 23/00, 17.07.2001] описан способ получения никельсодержащего катализатора, согласно которому активный компонент, в частности Ni, наносится методом пропитки на CaAl2O4. Далее полученный материал прокаливают в токе воздуха при температуре 950°С. Испытания полученного катализатора в условиях паровой конверсии показали снижение степени превращения метана на 0,5% в течение 90 часов. Если предположить, что такая тенденция сохранится при более длительной работе, то можно ожидать более существенного снижения активности катализатора.

В патенте US 4906603 A, B01J 23/00, 06.03.1990 сообщается о способе получения катализатора паровой конверсии метана, в котором в качестве носителя используют алюминат кальция в форме гиббонита [CaO(Al2O3)6]. Для создания пористой структуры добавляют выгорающую добавку - графит. Сформованный материал подвергают гидротермальной обработке, затем проходит стадии прокалки и выжигания графита.

Известен способ получения катализатора паровой конверсии метана, носитель которого готовят смешением цемента марки СА-25 с гидроокисью алюминия. Сформованный материал прокаливают при температуре 1300°С и затем наносят активный компонент [US 5773589 A, B01J 23/40, 30.06.1998].

Использование различных алюминатов кальция повышает устойчивость катализаторов к образованию никелевой шпинели, накопление и кристаллизация которой является одной из основных причин дезактивации катализаторов. Недостатком является снижение термостойкости по мере увеличения концентрации алюминатов кальция в носителе.

Известны способы получения катализаторов паровой конверсии метана, носителем которых является шпинель MgAL2O4.

Например, в патенте US 6878667 В2, B01J 23/09, 12.04. 2005 описан способ получения катализатора паровой конверсии метана, в котором различные активные компоненты наносят из их растворов на промышленную шпинель MgAl2O4. Приготовленные таким образом катализаторы после сушки при 110°С подвергают последующей прокалке при 800°С в течение 4 часов. Катализатор, по оценке авторов, имеет высокую активность и механическую прочность.

В патенте US 6958310 В2, B01J 12/00, 02.10.2003 способ получения катализатора, в котором носитель готовят пропиткой γ-Al2О3 раствором нитрата магния с последующей сушкой при 110°С в течение 4 часов и последующей прокалкой при 900°С в течение 2 часов. Далее на полученный носитель методом пропитки наносят активный компонент и полученный катализатор прокаливают при температуре 500°С в течение 3 часов. Катализатор, по мнению авторов, имеет высокую активность и термостабильность.

Однако высокая термическая стабильность магниевой шпинели не защищает ее от нежелательного химического взаимодействия в окислительной среде с никелевым компонентом катализатора, обусловленного диффузионным обменом ионов Mg2+ носителя на ионы Ni2+, имеющие близкие ионные радиусы. Для увеличения стабильности магниевой шпинели предлагается проводить предварительную гидротермальную обработку катализатора при повышенных температуре и давлении. В заявке US 2004265225 А1, кл. В01J 19/00, 30.12.2004 описан способ получения катализатора с использованием гидротермально стабилизированного носителя. Гидротермальную обработку проводят при температуре 900°С, парциальном давлении водяного пара 6-7 атм в течение 24 часов.

Следует отметить, что добавление такой ступени в схему приготовления катализатора неизбежно приведет к увеличению стоимости конечного продукта.

В заявке FR 2857003 А, В01J 21/00, 07.01.2005 разработан способ приготовления катализатора, носителем которого является шпинель со структурной формулой MxM11-xAl2O4, где М - Mg, Zn, Mn, a M1 - Fe, Ni, Co. Катализатор демонстрирует высокую активность и термическую стабильность.

Это наиболее близкое техническое решение.

К недостаткам описанного способа можно отнести высокую стоимость промышленных реактивов для приготовления носителя, а также многостадийность метода: а) пропитка исходного γ-Аl2О3 азотнокислыми солями магния и алюминия с последующей сушкой материала при 120°С в течение 15 часов, б) постадийная прокалка носителя при 400°С в течение 2 часов, при 600°С в течение 3 часов, при 900°С в течение 4 часов и далее финишная прокалка при 1000°С в течение 15 часов, в) пропитка носителя солями активного компонента и прокалка готового катализатора при температуре 700°С в течение 5 часов.

Задача предлагаемого изобретения заключается в расширении сырьевой базы для производства катализатора паровой конверсии метансодержащих углеводородов и снижения его себестоимости при сохранении активности на уровне промышленных образцов.

Для решения поставленной задачи предложен способ получения катализатора паровой конверсии метансодержащих углеводородов на основе шпинельсодержащего носителя, в котором носитель получают осаждением неорганических компонентов из растворов кислотного травления вермикулитовой руды растворами щелочи с последующей прокалкой полученного осадка при температуре, обеспечивающей получение сложной шпинели типа Mg[Аl,Fe]2O4, причем растворы кислотного травления вермикулитовой руды и щелочи берут в количествах, обеспечивающих содержание оксидов магния, железа, алюминия в готовом катализаторе, отвечающее их массовому соотношению 1:0,6:1, носитель выделяют, гранулируют, сушат и прокаливают, после чего наносят никель в количестве 6-15 мас.% в готовом катализаторе и вновь прокаливают.

Известны процессы кислотного травления вермикулитовой руды с целью получения пористого сорбента, в которых кислые растворы не использовались и требовали утилизации, описанные в патенте SU 1042794, B01J 20/16, 23.09.1983.

Однако не было известно и авторами впервые обнаружено, что из выделенного по предлагаемому способу осадка, как показывают данные исследования структуры, в ходе термообработки получается сложный оксид со структурой шпинели Mg[Al,Fe]2O4, проявляющий активность в процессе паровой конверсии метансодержащих углеводородов и для образования которого другими методами требуются более высокие затраты энергии и реактивов.

При травлении вермикулита используют, как правило, 10% раствор НСl, в связи с чем требуются небольшие количества щелочи для получения осадка неорганических компонентов, количество которого по массе составляет 50% от исходной вермикулитовой руды.

Ориентировочная стоимость предлагаемого катализатора 30000 руб. за тонну, что на порядок ниже стоимости производства современных промышленных катализаторов.

Учитывая то, что в стране имеются огромные копи вермикулитовой руды, которые на сегодняшний день практически не используются, предлагаемый катализатор имеет выгодную конъюнктуру для реализации выпуска его в стране.

Формула изобретения

Способ получения катализатора паровой конверсии метансодержащих углеводородов на основе шпинельсодержащего носителя, отличающийся тем, что носитель получают осаждением неорганических компонентов из растворов кислотного травления вермикулитовой руды растворами шелочи с последующей прокалкой полученного осадка при температуре, обеспечивающей получение сложной шпинели типа Mg [Al, Fe]2O4, причем растворы кислотного травления вермикулитовой руды и щелочи берут в количествах, обеспечивающих содержание оксидов магния, железа и алюминия в готовом катализаторе, отвечающее их массовому соотношению 1:0,6:1, носитель выделяют, гранулируют, сушат и прокаливают, после чего наносят никель в количестве 6-15 мас.% в готовом катализаторе и вновь прокаливают.

 

Изобретение "СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПАРОВОЙ КОНВЕРСИИ МЕТАНСОДЕРЖАЩИХ УГЛЕВОДОРОДОВ" (Цодиков М.В., Курдюмов С.С., Бухтенко О.В., Жданова Т.Н.) отмечено юбилейной наградой (25 лет Российской Академии Естествознания)
Медаль Альфреда Нобеля