Название | СПОСОБ СКОРОСТНОЙ ДЕСТРУКЦИИ НЕФТЯНЫХ ОСТАТКОВ И ЗАГРЯЗНЕНИЙ |
---|---|
Разработчик (Авторы) | Цодиков М.В., Хаджиев С.Н., Передерий М.А., Кадиев Х.М., Чистяков А.В., Мартынов Б.И., Константинов Г.И., Марин В.П. |
Вид объекта патентного права | Изобретение |
Регистрационный номер | 2462500 |
Дата регистрации | 03.12.2010 |
Правообладатель | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук |
Изобретение может быть использовано в нефтяной, нефтехимической, газовой, химической промышленности и в охране окружающей среды для утилизации нефтяных остатков и загрязнений, удаленных с водной или твердой поверхностей, а также из сточных вод. Для осуществления способа проводят адсорбцию в порах углеродных сорбентов и обработку сверхвысокочастотным излучением в потоке газа. В качестве газа используют Ar или CO2, а в качестве углеродных сорбентов - сорбенты, выбираемые из ряда: бурый уголь, газовый уголь, костра льна или древесные отходы, обладающие тангенсом угла диэлектрических потерь, равным или выше 8. Обработку сверхвысокочастотным излучением проводят при индуцированной температуре 300-600°С в течение 5-10 мин до получения в качестве продукта деструкции газа, в составе которого преобладает Н2. Изобретение обеспечивает ускорение и упрощение процесса деструктивной переработки нефтяных продуктов техногенных выбросов и промышленных отходов с получением из них дешевого высококалорийного водородсодержащего газа. Кроме того, в предложенном способе облегчается управление процессом деструкции и регулирование состава продуктов деструкции. 1 з.п. ф-лы, 3 ил., 6 табл., 18 пр.
Изобретение относится к области нефтяной, нефтехимической, газовой, химической промышленности и к области охраны окружающей среды, и более конкретно, к способам утилизации нефтяных остатков и загрязнений, удаленных с водной или твердой поверхностей, а также из сточных вод, и может быть использовано для осуществления природоохранных мероприятий с получением ценных энергоносителей.
Разработка эффективных способов утилизации нефтяных остатков и загрязнителей является одной из важнейших экологических проблем современности. Нефтяная и нефтехимическая промышленность по масштабам и степени воздействия на природную среду относятся к числу отраслей, обладающих исключительно высокой экологической опасностью, что в большей степени объясняется привнесением в природную среду вредных углеводородных загрязнителей. Среди них наибольшую опасность представляют сырая нефть, нефтешламы, гудроны и другие вредные и токсичные вещества [1, 2].
Известно, что огромные объемы нефти и нефтепродуктов ежегодно выливаются при авариях на нефтепромыслах, нефтехранилищах, нефтепроводах, нефтеперерабатывающих и нефтехимических заводах, а также на объектах потребления нефтепродуктов - морских и речных портах, железнодорожных узлах, автохозяйствах, АЗС и т.д. [3].
Из отходов нефтеперерабатывающей промышленности наиболее многочисленными являются нефтешламы, на втором месте - гудроны, включая прямогонный гудрон - остаток после прямой перегонки нефти на горючие и смазочные компоненты и кислый гудрон - многотоннажный трудноутилизируемый отход нефтеперерабатывающей промышленности, образующийся при очистке масел (трансформаторных, конденсаторных, медицинских, парфюмерных и др.) концентрированной серной кислотой или олеумом. Кислый гудрон разной степени кислотности сбрасывают в пруды-накопители, где с течением времени происходит вымывание кислоты атмосферными осадками, а также выделение SO2 и SO3, в результате чего загрязняются водный и воздушный бассейны. Пруды занимают большие площади, содержащие многие тысячи тонн отходов, их общая масса в России и за рубежом достигает миллионов тонн, при этом кислые гудроны фильтруются сквозь почву, попадая в источники водоснабжения, что представляет реальную угрозу для населения. Поэтому решение проблемы утилизации гудрона будет способствовать созданию безотходного производства и охране окружающей среды [4].
Все отмеченное выше обусловливает высокую актуальность разработки процессов исчерпывающей деструкции нефтяных остатков и загрязнений, как одной из составляющей важнейших проблем сегодняшнего дня - проблемы разработки эффективных подходов к утилизации техногенных выбросов и промышленных отходов.
Известно, что наиболее эффективным, широко используемым методом фиксации и поглощения нефтепродуктов при очистке поверхности акваторий от нефтяных разливов, а также при очистке загрязненных почв и других твердых поверхностей является сорбция углеродными сорбентами, полученными на основе ископаемого угля, а также возобновляемой биомассы, по известным технологиям [5-8]. Образовавшийся при этом конгломерат «сорбент-нефтепродукт» чаще всего сжигают в котельных установках.
Известен метод очистки загрязненной водной поверхности с использованием гидрофобных углеродных сорбентов, которыми обрабатывают загрязненную поверхность воды, описанный в RU №2160632, B01J 20/20, С01В 31/08, 20.12.2000.
Известно использование для очистки жидких сред от нефти и нефтепродуктов сорбента, являющегося продуктом термообработки лузги зерен риса (RU №2259875, B01J 20/24, C02F 1/28, 10.09.2005).
Также известно использование для очистки воды от нефтепродуктов сорбента, содержащего обуглероженную льняную костру и сапропель (RU №2198987, Е02В 15/04, C02F 1/28, B01J 20/22, В09С 1/00, 20.02.2003).
Общим недостатком описанных способов является возникающая проблема сбора и утилизации сорбентов после адсорбции нефтяных продуктов, а также деструкции самих адсорбированных нефтяных продуктов.
Известен способ удаления и деструкции нефтяных загрязнений из воды и почвы, в котором загрязнения адсорбируют измельченным углем, например бурым, после чего подвергают деструкции с помощью микроорганизмов (DE 4303842, A62D 3/00, C02F 1/28, C12S 9/00, C09K 3/32, Е02В 15/04, 17.02.1994).
Недостатком данного способа является его сложность и длительность (несколько суток и более), связанная с необходимостью культивирования микроорганизмов.
В этом же источнике указана возможность сжигания адсорбированных загрязнений, но лишь для случая удаления их с твердых гладких поверхностей, таких как бетонные и асфальтовые покрытия, тогда как при авариях наиболее важной задачей является очистка водоемов и загрязненных почв.
Кроме того, в обоих случаях подвергнутые деструкции нефтяные загрязнения не используют в дальнейшем как полезные продукты и их состав не регулируют.
Наиболее близким к предложенному изобретению является способ скоростной деструкции нефтяных остатков и загрязнений, включающий их адсорбцию в порах углеродных сорбентов и обработку сверхвысокочастотным излучением при индуцированной температуре 200-1200°С менее 1 мин в потоке инертного газа (RU №2381256, C10G 15/08, C10G 25/00, C10G 25/08, C10G 32/02, B01J 19/08, 10.02.2010). Известный способ позволяет провести скоростную обработку нефтяных остатков с получением легких углеводородов, но не дает возможности получить в качестве продуктов деструкции синтез-газ, в котором преобладают водород и, в меньшей степени, СО.
Задача предлагаемого изобретения заключается в разработке способа скоростной деструкции нефтяных остатков и загрязнений, позволяющего быстро и эффективно утилизировать нефтяные остатки и загрязнения - продукты техногенных выбросов, катастроф и промышленных отходов - с получением водородсодержащего газа.
Поставленная задача решается тем, что предложен способ высокоскоростной деструкции нефтяных остатков и загрязнений, включающий их адсорбцию в порах углеродных сорбентов и обработку сверхвысокочастотным излучением в потоке газа, в качестве которого используют Ar или CO2, в качестве углеродных сорбентов - сорбенты, выбираемые из ряда: сорбенты из бурого угля, газового угля, костры льна или древесных отходов. Указанную обработку проводят при индуцированной температуре 300-600°С в течение 5-10 мин до получения в качестве продукта деструкции газа, в составе которого преобладает H2.
Согласно предлагаемому способу в качестве углеродных сорбентов используют сорбенты, обладающие тангенсом угла диэлектрических потерь, равным выше 8.
Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в:
- быстром и эффективном получении дешевого высококалорийного водородсодержащего газа из нефтяных продуктов техногенных выбросов, катастроф и промышленных отходов;
- возможности управлять процессом деструкции и получать продукты деструкции того или иного состава путем выбора потока газа (Ar или CO2).
С целью определения пригодности углеродных сорбентов (УС) различной природы для высокоскоростной переработки нефтяных отходов и загрязнений тестировали ряд типовых УС, применяемых для сорбции углеводородов, на способность поглощать сверхвысокочастотное излучение. Для этого исследовали кинетику разогрева образцов УС при установленных оптимальных условиях облучения: плотность тока I=200 мA, мощность 540 Вт [9]. Для исследований использовали углеродные сорбенты: мелкодисперсные из древесных отходов (СДО)* и костры льна (СКЛ) [5-6]; сферический из газового угля (СГС) и дробленый (неправильная форма частиц) из бурого угля (СБД) [7, 8].
В табл.1 представлена характеристика пористой структуры исследуемых сорбентов, их насыпная плотность, зольность, содержание железа в минеральной части и электрофизические характеристики:
диэлектрическая проницаемость (ε) и тангенс угла диэлектрических потерь (tg δ).
Таблица 1. | ||||||||
Физико-химические и структурные характеристики УС | ||||||||
№ образца | Обозначение УС | Ad, % | γ, г/см3 | Объем пор, см3/г | ε | tg δ | ||
VΣ | Ws | Vма | ||||||
1 | СДО | 2.5 | 0.22 | 1.29 | 0.27 | 1.02 | 2.10 | 8,60 |
2 | СКЛ | 13.4 | 0.16 | 2.52 | 0.23 | 2.29 | 2.07 | 9.00 |
3 | СГС | 25.1 | 0.43 | 0.97 | 0.48 | 0.49 | 1.86 | 12.72 |
4 | СБД | 24.0 | 0.34 | 1.00 | 0.47 | 0.53 | 3.31 | 9.43 |
Обозначения: | ||||||||
СДО - сорбент из древесных отходов (стружка, опилки в любом соотношении) и порода дерева не влияют на качество сорбента СДО [5]; | ||||||||
СКЛ - сорбент из костры льна; | ||||||||
СГС - сорбент из газового угля, сферический; СБД - сорбент из бурого угля, дробленый; Ad - зольность; γ - насыпная масса; | ||||||||
VΣ - суммарный объем пор; Ws - объем сорбирующих пор; Vма - объем макропор; ε - диэлектрическая проницаемость; tg δ - тангенс угла диэлектрических потерь. |
Нами было установлено, что структура пор и состав углеродных сорбентов в значительной степени оказывают влияние на уровень поглощения сверхвысокочастотного излучения. Динамика разогрева УС существенно зависит от наличия пор определенной структуры и содержания минеральных примесей (зольности) [10]. В зависимости от структуры, плотности и зольности углеродные сорбенты имеют разные электрофизические показатели.
Как видно из табл.1, снижение сорбирующих пор (Ws) и зольности (Ad) резко снижает диэлектрическую проницаемость и тангенс угла диэлектрических потерь сорбентов, что обусловливает снижение их способности к поглощению сверхвысокочастотного излучения.
Кинетика разогрева УС при обработке сверхвысокочастотным излучением при плотности тока 200 мА и мощности облучения по сечению реактора до 4 мВт приведена в табл.2.
Таблица 2. | ||||||
Кинетика разогрева УС при обработке сверхвысокочастотным облучением | ||||||
№ образца, обозначение | Температура, °С за время разогрева, с | |||||
5 | 10 | 15 | 20 | 25 | 30 | |
№1, СДО | 80 | 190 | 310 | 420 | 520 | 610 |
№2, СКЛ | 100 | 210 | 330 | 440 | 560 | 630 |
№3, СГС | 380 | 500 | 610 | 700 | 810 | 920 |
№4, СБД | 500 | 660 | 760 | 830 | 820 | 940 |
Как видно из результатов таблицы, сорбенты №3 и №4 с высокими электрофизическими показателями за 25-30 с обработки сверхвысокочастотным излучением разогреваются до 800-950°С. Мелкодисперсные сорбенты из древесных отходов (обр. №1) и из костры льна (обр. №2), характеризующиеся значительно более низкими электрофизическими показателями, при обработке сверхвысокочастотным излучением в течение 30 с разогреваются только до 610 и 630°С соответственно.
Приведенные в табл.1 и 2 данные наглядно показывают, что углеродные сорбенты, полученные из бурого и газового углей, с развитой структурой сорбирующих пор и высокой зольностью обладают высокой способностью к поглощению сверхвысокочастотного излучения. Было установлено, что за первые 5 с в порах этих сорбентов протекают нестационарные пробойные явления, вызывающие образование нестационарной плазмы.
В процессе нестационарного пробоя в течение 10-15 мин происходит деструкция устойчивых металлокомплексных и органических соединений [11]. Макро- и крупные мезопоры представляют собой псевдоконденсаторы, в объеме которых зарождаются нелинейные пробойные явления [10]. В неравновесных условиях пробойных явлений при индуцированном нагреве до температур 300-600°С разложение органических субстратов, адсорбированных в микро- и мезопорах, происходит значительно быстрее, чем их диффузия и последующая десорбция.
Было также установлено, что при обработке сверхвысокочастотным излучением в среде Ar и CO2 в течение 5-10 мин при 300-600°С в составе образующегося газа преобладает H2, при этом применение CO2 повышает глубину разложения и содержание синтез-газа в составе газа.
На практике цели изобретения достигаются следующим образом.
На каждый из 4-х образцов УС, характеристика которых приведена в табл.1 и 2, методом пропитки из раствора органического растворителя наносили нефтепродукт в различных концентрациях, далее из образцов отгоняли растворитель сначала при комнатной температуре, затем в вакуумном шкафу при пониженном давлении 10 мм рт.ст. и температуре 40°С в течение 5 ч. В качестве нефтепродукта использовали два вида гудрона, полученных из западно-сибирской нефти (I) и битуминозной нефти Московского нефтеперерабатывающего завода (II). Гудрон наносили из раствора в петролейном эфире с концентрацией относительно массы сорбента: 10, 20 и 30 мас.%.
Основные физико-химические параметры гудрона представлены в табл.3.
Таблица 3. | ||
Характеристика гудрона из западно-сибирской (I) и битуминозной (II) нефти | ||
Показатель | Нефтяные остатки | |
Гудрон западно-сибирской нефти - Гудрон I | Гудрон битуминозной нефти - Гудрон II | |
Плотность при 20°С, кг/м3 | 0.930 | 1.007 |
Условная вязкость при 80°С, мм2/с | 1715 | 1760 |
Выход фракций, выкипающих до 500°С, мас.% | 11.1 | 11.0 |
Выход фракций, выкипающих после 500°С, мас.% | 88.9 | 88.8 |
Содержание воды, мас.% | отсутствие | отсутствие |
Коксуемость по Конрадсону, мас.% | 12.7 | 16.5 |
Содержание, мас.% | ||
С | 85.40 | 85.00 |
H | 11.32 | 11.38 |
S | 2.71 | 3.04 |
N | 0.52 | 0.55 |
Зола | 0.050 | 0.030 |
Углеродный сорбент (УС) с адсорбированным в порах гудроном помещают в кварцевый проточный реактор, установленный в рабочую камеру сверхвысокочастотной установки, и воздействуют сверхвысокочастотным излучением в потоке аргона и углекислого газа.
Затем газ, выходящий из реактора, проходит через микросепаратор, охлаждаемый до -50÷-70°С, и поступает в приемную емкость, из которой подается на анализ в хроматограф. Скорость газового потока составляет 8-12 см3/мин. Опыты проводят при индуцируемой излучением постоянной температуре 300 и 600°С. После окончания опыта и охлаждения системы УС выгружают и анализируют на остаточное количество содержащихся в нем нефтяных остатков.
В качестве источника сверхвысокочастотного излучения используют применяющийся в бытовых микроволновых печах магнетрон М-140 (частота генерации 2,40-2,50 ГГц), имеющий полную взаимозаменяемость с иностранными аналогами. Питание цепи анода магнетрона осуществляется с выхода однополупериодного выпрямителя с удвоением напряжения, блок питается от сети переменного тока напряжением 220 Вт (50 Гц). Напряжение на первичной обмотке высоковольтного трансформатора регулируют с помощью ЛАТР'а - лабораторного автотрансформатора, что позволяет управлять уровнем генерируемой мощности в широких пределах. В блоке питания магнетрона предусмотрено автоматическое выключение напряжения анода в случае отклонения задаваемых принудительно режимов технологического процесса и самопроизвольного нарушения установленного режима питания магнетрона по цепи анода.
Рис.1. Принципиальная схема установки скоростной деструкции нефтяных остатков и загрязнений с применением сверхвысокочастотного излучения (1 - микроволновый генератор (магнетрон); 2 - волноводный тракт; 3 - поглощающая керамика; 4 - камера поглощения; 5 - термопара; 6 - ловушка для жидкости; 7 - хроматограф; 8 - ваттметр (энергия до поглощения); 9 - ваттметр (энергия после поглощения)).
Определение остаточного количества нефтяных остатков в образцах УС проводят с помощью ускоренной жидкостной экстракции с последующим анализом полученных экстрактов методом высокоэффективной жидкостной хроматографии. Для экстракции образцов применяют автоматический экстрактор фирмы Dionex модели ASE200.
Хроматографический анализ проводят на приборе фирмы GILSON с детектором UV2000. Растворитель - гексан/изопропиловый спирт в соотношении 95:5, температура экстракционной ячейки - 90°С, давление -200 атм, время экстракции - 30 мин. Аналитическая колонка - Zorbax Sil: L=250 мм, внутренний диаметр - 4,6 мм, размер частиц неподвижной фазы - 5 мкм, подвижная фаза (элюент) гексан/изопропиловый спирт в соотношении 95:5, скорость подачи элюента 2 мл/мин, объем вводимой пробы 20 мкл, длина волны - 254 нм. Для калибровки используют стандартные растворы исходных гудронов с концентрацией от 0,1 мг/мл до 0,001 мг/мл.
Анализ газовой пробы осуществляют методом газожидкостной хроматографии - ГЖХ на хроматографе "Кристалл" с использованием пламенно-ионизационного детектора (для определения углеводородов) и катарометра (для определения кислородсодержащих компонентов). Анализ жидких фракций, образующихся в результате воздействия сверхвысокочастотного излучения, исследуют методом хромато-масс-спектрометрии.
Таким образом, предлагаемый способ скоростной деструкции нефтяных остатков и загрязнений под воздействием сверхвысокочастотного излучения отличается от традиционных термических способов деструкции высокой эффективностью и экологической чистотой и позволяет провести в короткое время утилизацию нефтяных выбросов с получением ценных компонентов, являющихся в настоящее время основными химическими энергоносителями - в водород и синтез-газ, что может стать наиболее эффективным, дешевым и экологически чистым методом утилизации многотоннажных отходов нефтяного гудрона и нефтяных разливов, количество которых в настоящее время достигает десятки миллионов тонн.
Формула изобретения
1. Способ высокоскоростной деструкции нефтяных остатков и загрязнений, включающий их адсорбцию в порах углеродных сорбентов и обработку сверхвысокочастотным излучением в потоке газа, отличающийся тем, что в качестве газа используют Ar или CO2, в качестве углеродных сорбентов - сорбенты, выбираемые из ряда: сорбенты из бурого угля, газового угля, костры льна или древесных отходов, а указанную обработку проводят при индуцированной температуре 300-600°С в течение 5-10 мин до получения в качестве продукта деструкции газа, в составе которого преобладает Н2.
2. Способ по п.1, отличающийся тем, что в качестве углеродных сорбентов используют сорбенты, обладающие тангенсом угла диэлектрических потерь, равным или выше 8.