Название | СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПАРОВОЙ КОНВЕРСИИ МЕТАНСОДЕРЖАЩИХ УГЛЕВОДОРОДОВ |
---|---|
Разработчик (Авторы) | Цодиков М.В., Курдюмов С.С., Бухтенко О.В., Жданова Т.Н. |
Вид объекта патентного права | Изобретение |
Регистрационный номер | 2483799 |
Дата регистрации | 24.12.2010 |
Правообладатель | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации |
Изобретение относится к способу получения катализатора. Описан способ получения катализатора паровой конверсии метансодержащих углеводородов, содержащего оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]2O4 и активный компонент - никель, включающий прокаливание модифицированного носителя, характеризующийся тем, что на поверхность оксидного носителя сначала наносят путем пропитки раствором соли церия или лантана или их смесь, взятые в количестве, обеспечивающем их содержание, равное 5,0-10% мас. в расчете на оксидный носитель, а затем наносят никель и прокаливают при температуре 500°С с получением катализатора, содержащего 10,0% мас. никеля, причем оксидный носитель перед пропиткой подвергают гидротермальной обработке при парциальном давлении водяного пара, равном 1,8-2,0 МПа, и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град/мин. Технический результат - повышение устойчивости катализатора к коксообразованию, увеличение его механической прочности. 4 пр., 2 табл.
Изобретение относится к способу получения катализатора, применяемого для процессов конверсии углеводородного сырья в водород и водородсодержащие газы.
В настоящее время большая часть крупномасштабного производства водорода и водородсодержащих газов основана на конверсии углеводородов и прежде всего природного газа. При этом основным технологическим процессом является каталитическая паровая конверсия. Технологически метод хорошо разработан и позволяет проводить процесс при высоких давлениях и температурах.
Дальнейшее повышение экономической эффективности агрегатов получения водорода возможно по двум основным направлениям: увеличение производительности катализатора и снижение отношения пар/углерод. Работа в таких режимах требует применения катализаторов, сочетающих высокую активность и стойкость к зауглероживанию.
Учитывая эти требования, продолжаются поиски каталитических композиций, различающихся структурообразующими добавками, промоторами в активном компоненте и природой самого активного компонента.
В [1] (SU №743716, 06.03.1980) описан способ приготовления катализатора путем пропитки оксида алюминия растворами азотнокислых солей с последующей сушкой и прокалкой при 900-1000°С катализаторной массы. С целью повышения активности и устойчивости к зауглероживанию катализатор дополнительно пропитывают 5-10% раствором гидроксида калия.
Введение щелочных металлов в состав катализатора позволяет сдерживать реакции образования углерода, но вследствие их летучести в условиях парового риформинга это положительное воздействие падает со временем, а также может неблагоприятно отразиться на течении процесса.
Известен катализатор паровой конверсии метана [2] (US №7.767.619, 03.08.2010), носителем которого является алюминат кальция, на который наносится до 30% активного компонента (Ni, Co, Pt и др.) и до 35% промотора (La, Ce, Y и др.).
Приготавливают катализатор смешением гидроксида алюминия с цементом, водой и графитом. Приготовленную смесь таблетируют, автоклавируют в течение 10 часов и затем прокаливают 8 часов при температуре 400°С. Далее носитель пропитывают раствором La(NO3)3 или Се(NO3)3 и прокаливают в течение 5 часов при температуре 1250-1350°С.
Испытания катализатора при низкой температуре (538°С) показали высокую сопротивляемость его отложениям углерода.
К недостаткам способа можно отнести многостадийность приготовления и высокую температуру прокалки готового катализатора. Использование различных алюминатов кальция повышает устойчивость катализаторов к образованию никелевой шпинели, накопление и кристаллизация которой являются одной из основных причин дезактивации катализаторов. Недостатком является снижение термостойкости по мере увеличения концентрации алюминатов кальция в носителе.
Достаточно большую группу составляют катализаторы, в которых в качестве активного компонента используют благородные металлы (Ag, Pt, Pd, Au).
Так в [3] (US №4.060.498, 29.11.1977) описан способ приготовления катализатора, согласно которому для подавления отложения углерода на нем при работе с низкими отношениями Н2O/С в качестве активного компонента используют серебро.
В [4] (US №6.958.310, 25.10.2005) и в [5] (WO 02066371, 29.08.2002) описан способ получения катализатора, где для тех же целей используют в качестве активного элемента платину, палладий, иридий.
В [6] (US №5.997.835, 07.12.1999) описан процесс каталитического парового риформинга без образования углерода на Ni-содержащем катализаторе, включающем в качестве промотора 0,01-10,0% золота. Катализатор готовят пропиткой носителя растворами нитрата никеля и тетрааминонитрата золота. После сушки частиц катализатора его загружают в реактор и активируют при 350-400°С в среде водорода.
К недостаткам этих катализаторов можно отнести их высокую стоимость.
Известен способ [7] (US №5.679.614, 21.10.1997), согласно которому приготовление катализатора состоит из следующих ступеней:
а) приготовление носителя катализатора смешением оксидов 65% γ-Al2O3, 5% La2O3 и 10% MgO с последующей прокалкой при 700-800°С в течение 6 часов;
б) пропитка носителя растворами азотнокислых солей Cr и Ni;
в) добавление в смесь 1 N раствора азотной кислоты, формовка гранул катализатора и прокалка последнего при температуре 800°С в течение 6 часов.
Конечный состав полученного катализатора - 15% Ni, 10% MgO, 5% Cr, 5% La, 65% Al2O3.
Катализатор, по оценке авторов, имеет высокую активность и механическую прочность в условиях паровой конверсии парафиновых углеводородов и высокую сопротивляемость отложениям углерода.
К недостаткам способа можно отнести его многостадийность и высокую температуру прокалки полученных гранул катализатора.
В [8] (US №5.268.346, 07.12.1993) носитель для катализатора готовят смешением водных растворов Ce(NO3)3 и Al(NO3)3 с 2 N раствором NH4OH. Отфильтрованный осадок сушат при 120°С в течение 24 часов и затем прокаливают при температуре 800°С в течение 3 часов.
Полученный носитель пропитывают водным раствором хлорида рутения, сушат и восстанавливают водородом при температуре 700°С в течение 3 часов. Катализатор показал хорошую сопротивляемость отложению углерода при проведении парового риформинга при температуре 600°С.
Наиболее близким техническим решением к предлагаемому являются способ получения катализатора паровой конверсии метансодержащих углеводородов, описанный в [9] RU №2375114, 10.12.2009, согласно которому разработан способ приготовления катализатора на основе смешанного оксида со структурой шпинели, полученной из вермикулитовой руды. Носитель получают путем травления вермикулита разбавленной соляной кислотой (5-7%-ный раствор) при 50-70°С с последующим отделением раствора травления и обработки его 2 N раствором NaOH. При травлении вермикулита в кислотный раствор переходит до 60% мас. (в расчете на исходный вермикулит) неэмпирических включений ионов алюминия, магния и железа. При обработке щелочью эти ионы выделяются в виде осадка, который формуют в гранулы и затем прокаливают их при температуре 850°С в течение 2 часов. Никель в количестве 10% мас. вводят в катализатор методом пропитки с использованием Ni(NO3)2·6H2O.
Получают катализатор, содержащий носитель в виде сложной шпинели типа Mg[Al,Fe]2O4 при массовом соотношении оксидов магния, железа и алюминия, равном 1:0,6:1, и никель.
В присутствии полученного таким образом катализатора конверсия метана достигает равновесного значения в первые два часа работы при температуре процесса 800°С. Однако при 600°С содержание углеродистых отложений в течение испытания составило 1,6%, что при увеличении длительности процесса может привести к существенному снижению активности катализатора.
К недостаткам описанного способа можно отнести низкую устойчивость катализатора к коксообразованию и невысокую механическую прочность последнего.
Задача предлагаемого изобретения заключается в повышении устойчивости катализатора к коксообразованию и увеличении его механической прочности.
Решение поставленной задачи достигается тем, что в способе получения катализатора паровой конверсии метансодержащих углеводородов, содержащего оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]2O4 и активный компонент - никель, включающем прокаливание модифицированного носителя, на поверхность оксидного носителя сначала наносят путем пропитки раствором соли церий или лантан или их смесь, взятые в количестве, обеспечивающем их содержание, равное 5,0-10,0% мас. в расчете на оксидный носитель, а затем наносят никель и прокаливают при температуре 500°С с получением катализатора, содержащего 10,0% мас. никеля. Для повышения механической прочности оксидного носителя последний перед пропиткой подвергают гидротермальной обработке при парциальном давлении водяного пара, равном 1,8-2,0 МПа, и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град/мин.
С целью повышения устойчивости катализатора к коксообразованию перед стадией нанесения никельсодержащего активного компонента на поверхность оксидного носителя наносят 5,0% церия или лантана или их смеси при суммарном количестве модифицирующих компонентов 5,0-10%.
Формула изобретения
Способ получения катализатора паровой конверсии метансодержащих углеводородов, содержащего оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]2O4 и активный компонент - никель, включающий прокаливание модифицированного носителя, отличающийся тем, что на поверхность оксидного носителя сначала наносят путем пропитки раствором соли церия или лантана или их смесь, взятые в количестве, обеспечивающем их содержание, равное 5,0-10 мас.% в расчете на оксидный носитель, а затем наносят никель и прокаливают при температуре 500°С с получением катализатора, содержащего 10,0 мас.% никеля, причем оксидный носитель перед пропиткой подвергают гидротермальной обработке при парциальном давлении водяного пара, равном 1,8-2,0 МПа, и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град./мин.