Название | Катализатор и способ получения фракции ароматических и алифатических углеводородов из растительного масла |
---|---|
Разработчик (Авторы) | Чистяков А.В., Жарова П.А., Цодиков М.В., Гехман А.Е., Некипелов В.М. |
Вид объекта патентного права | Изобретение |
Регистрационный номер | 2652986 |
Дата регистрации | 04.05.2018 |
Правообладатель | федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" |
Изобретение относится к области гетерогенно-каталитических превращений органических соединений, а именно к каталитическому превращению возобновляемого сырья - растительных масел в алкан-ароматическую фракцию углеводородов С3-С11+, которая может быть использована для получения компонентов моторных топлив. Предложен катализатор получения ароматических и алифатических углеводородов из растительного масла, имеющий следующий состав, мас. %: Pd - 0,1-0,8, Ag - 0,2 -1,6, Al2O3 - 20-40, цеолит MFI (силикатный модуль 30) – остальное, а также способ получения ароматических и алкановых углеводородов из растительных масел в присутствии указанного катализатора в атмосфере водорода при давлении 10-50 атм при температуре 280-400°С и объемной скорости 0,4-24 ч-1, в котором в качестве сырья используют подсолнечное масло, рапсовое масло, арахисовое масло, кукурузное масло, касторовое масло, масла, вырабатываемые специальными культурами водорослей, такими как: Scenedesmus dimorphus, Spirogyra sp., Euglena gracilis, Prymnesium parvum, Porphyridium cruentum, Botryococcus braunii. Технический результат: увеличение выхода целевых продуктов, обеспечение их высокой чистоты от содержания гетероатомов, значительное повышение производительности катализатора по сумме целевых продуктов, уменьшение метанообразования, снижение температуры процесса. 2 н. и 1 з.п. ф-лы, 1 ил., 4 табл.,16 пр.
В настоящее время ведутся активные поиски в области разработки процессов получения моторных топлив на базе перспективных видов растительных масел [1]. Столь большой интерес, проявляемый к переработке растительных масел, продиктован необходимостью рационального потребления горючих природных депозитов и снижением зависимости от нефтяных ресурсов, а также повышением экологической приемлемости процессов получения топлив и потребления их на транспорте [2-5]. Помимо различных сельскохозяйственных культур, для получения масел растительного происхождения могут использоваться специальные культуры водорослей, во много раз превосходящие по производительности в получении, что позволяет сохранять посевные площади. В литературе описаны способы превращения растительных масел в ароматические фракции углеводородов в присутствии цеолитсодержащих катализаторов в среде водорода [6-9]. Главным образом внимание исследователей направлено на получение биодизеля первого поколения, представляющего собой метилаты или этилаты жирных кислот, содержащихся в растительных маслах. Процесс переэтерификации наиболее эффективно протекает в присутствии гомогенных катализаторов, что обусловливает высокие затраты на выделение катализатора из смеси продуктов и его утилизацию [1]. Еще одним существенным недостатком этого направления является проблема утилизации значительных количеств сопутствующего продукта - глицерина с примесями этерифицирующих агентов (метанол, этанол). Проблему выделения глицерина, не содержащего примесей этерифицирующих спиртов, возможно решить, используя трехстадийную технологию, согласно которой на первой стадии происходит омыление масел с образованием обводненного глицерина и солей соответствующих жирных кислот, после чего кислоты переводят в Н-форму и подвергают гидрированию [10].
Основным недостатком этого подход является многостадийность процесса в целом. В этой связи наиболее рациональным выглядит метод прямого гидрирования триглицеридов жирных кислот (ТГЖК). В этом подходе можно выделить два направления: получение нормальных алканов (преимущественно C17-C18) с использованием катализаторов на основе широкопористых носителей [11, 12] и получение алкан-ароматической фракции углеводородов, содержащей преимущественно алкилзамещенные бензола и разветвленные алканы С4-С6 [13, 14]. В работе [13] описан способ переработки рапсового масла при температурах 550-650°С в присутствии катализаторов Al2O3 и Al2O3/B2O3 во фракцию олефинов и ароматики в среде гелия, содержащую олефины до С19. В работе [14] описан способ переработки растительных масел в алкан-ароматическую фракцию при температурах 380-430°С в присутствии индивидуального H-ZSM-5 и H-ZSM-5, модифицированного сульфидом циркония. Выход целевой топливной фракции достигает 28 мас. %, выход газообразных продуктов до 40 мас. %.
Известен способ получения жидких топливных углеводородов каталитической конверсией масел растительного происхождения в присутствии катализаторов - высококремнеземных цеолитов ZSM-5 и ZSM-12 [15]. В качестве сырья использованы кукурузное, арахисовое, касторовое, талловое масла и масло жожоба, которое, в отличие от остальных, относящихся к триглицеридам жирных кислот, является сложным эфиром жирных кислот и одноатомных высших спиртов. При использовании катализатора HZSM-5 (цеолит ZSM-5 в водородной форме), температуре 400°С, скорости подачи касторового масла 2,5 г/г катализатора в час и дополнительной подаче водорода 5 мл/мин получены топливные углеводороды с выходом 78%, в том числе бензол-толуол-ксилольная фракция (смесь бензола, толуола, этилбензола и ксилолов) с выходом 48%, ароматические углеводороды С9-С13 с выходом 25%. При использовании других масел выход жидких топливных углеводородов и производительность катализатора были значительно хуже.
Недостатком способа является низкая производительность катализатора.
Известен способ получения ароматических углеводородов С6-С10 высокотемпературным контактированием углеводородного сырья и/или кислородсодержащих соединений с катализатором, содержащим цеолит со структурой ZSM-5 или ZSM-11, модифицированный элементами или соединениями элементов I, II, IV, V, VI, VII и VIII групп в количестве 0,05-5,0 мас. %, при температуре 280-460°С. Контактирование сырья с катализатором можно осуществлять в присутствии водородсодержащего газа [16].
Однако при использовании в качестве исходного сырья масел растительного происхождения, содержащих триглицериды кислот, проведение процесса в интервале вышеуказанных температур приводит к достаточно низкому выходу целевых продуктов при крайне низкой производительности катализатора по сумме углеводородов (г/г катализатора в час). Кроме того, получаемые при этом ароматические углеводороды загрязнены побочными продуктами - жидкими неароматическими соединениями, которые при температуре контактирования ниже 470°С состоят, в основном, из смеси жирных кислот сложного состава. Указанная смесь жирных кислот, с одной стороны, препятствует селективному выделению ароматических углеводородов, с другой, является неутилизируемым отходом, что приводит к серьезным экологическим проблемам и, как следствие, заниженной востребовательности известного способа при переработке масел растительного происхождения.
Известен способ получения ароматических углеводородов высокотемпературным контактированием масла растительного происхождения, содержащего триглицериды кислот, с катализатором, содержащим высококремнеземный цеолит, имеющий структуру ZSM-5, и промотор в виде оксида или смесей оксидов переходных металлов, выбранных из оксидов цинка, хрома, железа, при температуре в слое катализатора 470-630°С. Процесс проводят в присутствии водорода. При этом водород используют при скорости подачи 50-200 мл/г (100-150 мл/г) катализатора в мин. Водород подают в реактор, в котором он достигает катализатора, и осуществляют нагрев катализатора до заданных температур, после чего начинают подачу в реактор масла растительного происхождения со скоростью 2-7 г/г катализатора в час [17].
Также известен способ переработки растительных масел в присутствии каталитической композиции, представляющей собой два вида цеолитов (Y-форма и ZSM-5), модифицированных оксидами редкоземельных металлов в количестве не менее 1 мас. %. Температура процесса составляет 480-600°С [18].
Основным недостатком способов [17-18] является повышенная температура процесса.
Известен способ превращения растительных масел в ароматические соединения путем контакта с каталитически активными формами галлия для использования в нефтехимии и/или для компонентов топливных смесей или добавок к ним [19]. Возобновляемые масла с высоким содержанием кислорода, высоким мольным отношением Н/С, содержащие высшие жирные кислоты или их эфиры, подвергают нагреву и контакту с катализатором. Катализатор может быть наполненным галлием катализатором на одной или более цеолитно-глиноземистой матрице с размером пор, вмещающим 10 атомов кислорода, такой, как ZSM-5, ZSM-11, ZSM-23, МСМ-70, SSZ-44, SSZ-58, SSZ-35, and ZSM-22. Получение ароматических соединений из возобновляемых масел возрастает при большем отношении галлия к катиону, предпочтительное отношение Ga/решетка Al - около 1. Могут быть использованы различные возобновляемые масла или «биомасла», но масло из водорослей обеспечивает чрезвычайно высокий выход бензола, толуола, этилбензола и ксилолов (ВТЕХ) при конверсии над галлиево-катионным катализатором при давлении около 1 атм. и температуре около 400°С. Содержание ВТЕХ составляет 77% от жидкого продукта, таким образом.
Недостатками данного способа являются высокое содержание бензола в продуктах реакции, запрещенного к использованию в бензиновых топливах в количествах более 1%, и быстрая дезактивация катализатора.
Таким образом, создание катализатора, обладающего стабильностью действия в течение длительного промежутка времени, высокой селективностью и активностью является задачей настоящего изобретения.
Гетерометаллический прекурсор {PdAg2(OOCMe)4(HOOCMe)4}n для синтеза катализаторов готовили по следующей методике: суспензию Pd3(ООСМе)6 (400 мг, 1.78 ммоль по Pd) and AgOOCMe (400 мг, 2.4 ммоль) в 35 мл ледяной уксусной кислоты перемешивали при 90°С в течение 2 ч в защищенной от света колбе. Реакционную смесь охлаждали до ~50°С и отфильтровывали от темно-серого осадка непрореагировавшего и частично разложившегося ацетата серебра. Маточник оставляли на 12 часов в темноте, после чего отфильтровывали кристаллический темно-желтый осадок {PdAg2(OOCMe)4(HOOCMe)4}n (1) (277 мг). К маточному раствору добавляли еще порцию AgOOCMe (300 мг, 1.8 ммоль) и кипятили еще 2 ч. После охлаждения и фильтрования получили вторую порцию 1 (201 мг). Нагревание маточного раствора с третьей порцией AgOOCMe (200 мг, 1.2 ммоль) позволяет получить дополнительно 176 мг 1. Упаривание вдвое последнего маточного раствора позволяет получить последнюю порцию 1 (50 мг). Общий выход 1 704 мг (50% по Pd). Комплекс 1 растворим в АсОН и воде, не расворим в С6Н6 и растворяется с быстрым разложением в CHCl3, CH3CN, ацетоне и ТГФ, при хранении разлагается в течение нескольких месяцев даже в темноте. Элементный анализ: найдено (%): С. 24.03; Н 3.48. PdAg2C16O16H28 Вычислено (%): С 24.07; Н 3.53. ИК-спектр (НПВО, см-1): 1684s, 1603w, 1521vs, 1399vs, br, 1368w, 1374w, 1273s, 1016m, 946w, 890m, 696s, 673w, 619m. Структура гетерометаллического комплекса приведена на фиг. 1
Цеолит, используемый для приготовления катализатора, представляет собой отечественный аналог цеолита типа MFI с мольным отношением SiO2/Al2O3 = 30 (производство ОАО «Ангарский завод катализаторов и Органического синтеза», содержит не более 0,04 мас. % оксида натрия. Водородную форму цеолита получали при двукратном катионном обмене Na+ на ионы аммония в 1N растворе азотнокислого аммония с последующей сушкой и прокаливанием в течение 4 часов при 500°С.
Гранулы цеолитсодержащего катализатора получали путем смешения цеолита MFI со связующим - суспензией оксида алюминия (содержит 30 вес. % сухого Al2O3 производства ЗАО «Промышленные катализаторы», Рязань) и последующего формования гранул - экструдатов. Далее экструдаты сушили на воздухе, затем в сушильном шкафу и прокаливали при 500°С в течение 4 часов.
Гетерометаллический прекурсор наносили методом безостаточной пропитки на готовые экструдаты цеолита со связующим. Экструдаты пропитывали заданным количеством раствора гетерометаллического прекурсора в течение двух часов при комнатной температуре. Затем раствор упаривали, гранулы сушли при температуре 100-110°С в течение 3-4 часов и прокаливали в муфельной печи при 500°С в течение 4 часов. Содержание активных компонентов в готовых катализаторах составило, мас. %: Pd - 0,1-0,8, Ag - 0,2-1,6, Al2O3 - 20-40, цеолит MFI (силикатный модуль 30) - остальное.
Синтез алкан-ароматической фракции осуществляют в проточном реакторе с рециркуляцией газообразных продуктов со стационарным слоем катализатора, в качестве которого используют Pd-Ag/MFI/Al2O3 катализатор. Нагрев реактора осуществляется при помощи тороидальной электропечи, которая расположена снаружи трубчатого реактора. Высота тороидальной печи соответствует высоте реактора. По завершении нагрева катализатора начинают подачу исходных растительных масел на катализатор, количество которого в реакторе составляет 20 см3, с объемной скоростью 0,4-24 ч-1 в проточном режиме. Жидкие продукты после реактора собирают в охлаждаемых приемниках (1-й по ходу имеет температуру 0°С, 2-й - 15°C), газообразные продукты собирают в газгольдер и проводят анализ их состава методом газовой хроматографии. Газообразные продукты представляют собой легкие C1-С5 углеводороды, водород, оксид и диоксид углерода. Качественный и количественный состав газообразных продуктов определяют методом газовой хроматографии, методом абсолютной калибровки. Состав жидких продуктов определяют методами газожидкостной хроматографии и хромато-масс-спектрометрии. Наличие остаточных моно и полиглицеридов жирных кислот, а также свободных кислот в продуктах реакции осуществлялось методами ИК-спектроскопии.
Подвергаемое обработке растительное масло выбирают из ряда: подсолнечное масло, рапсовое масло, арахисовое масло, кукурузное масло, касторовое масло, масла, вырабатываемые специальными культурами водорослей, такими как: Scenedesmus dimorphus, Spirogyra sp., Euglena gracilis, Prymnesium parvum, Porphyridium cruentum, Botryococcus braunii.
Формула изобретения
1. Катализатор получения ароматических и алифатических углеводородов из растительного масла, имеющий следующий состав, мас. %: Pd - 0,1-0,8, Ag - 0,2 -1,6, Al2O3 - 20-40, цеолит MFI (силикатный модуль 30) - остальное.
2. Способ получения ароматических и алифатических углеводородов путем превращения растительного масла, отличающийся тем, что превращение растительного масла ведут в присутствии гетерогенного катализатора по п. 1, при температуре 280-400°С и объемной скорости подачи растительного масла 0,4-24 ч-1 в среде водорода при давлении 10-50 атм.
3. Способ по п. 2, отличающийся тем, что растительное масло выбирают из ряда: подсолнечное масло, рапсовое масло, арахисовое масло, кукурузное масло, касторовое масло, масла, вырабатываемые специальными культурами водорослей, такими как: Scenedesmus dimorphus, Spirogyra sp., Euglena gracilis, Prymnesium parvum, Porphyridium cruentum, Botryococcus braunii.